#### Current and future demographics of the veteran population, 2014–2024

Ernesto Amaral Texas A&M University Michael Pollard RAND Corporation Joshua Mendelsohn RAND Corporation Matthew Cefalu RAND Corporation

#### VA health care assessment

- The Department of Veterans Affairs (VA) provides health care to eligible veterans
- Veterans Access, Choice, and Accountability Act of 2014
  - Improve access to high-quality health care
  - Independent assessment of VA's health care delivery systems and management processes
  - Estimate current and projected demographics of veterans
  - We conducted this study in 2015

# **Objectives**

- Project the veteran population from 2014 to 2024 and their geographic distribution
  - Surveys collect information on veterans
  - No full national accounting since the 2000
     Decennial Census
- Describe the demographic characteristics of veterans
  - Age, sex, race/ethnicity, service era, geographic distribution (PUMA level)

#### **Projections for each service era**

- Pre-1950
- Korean War: July 1950–January 1955
- Pre-Vietnam: February 1955–July 1964
- Vietnam: August 1964–April 1975
- Post-Vietnam: May 1975–July 1990
- Gulf War: August 1990–August 2001
- Post-9/11: September 2001 or later

#### Data

- 2000 Decennial Census
  - Baseline of veteran population
  - Age, sex, race/ethnicity, service era
- U.S. Defense Manpower Data Center (DMDC)

   Age, sex, race/ethnicity, anticipated contract end date
- American Community Survey (ACS)
  - 5-year estimates: 2005-2009; 2009-2013
  - Migration information: PUMA in previous year

# **ACS** specificities

- Undercounts number of veterans
  - We used the 2000 Census and estimated veterans who would be alive in 2013
  - Number is equivalent to 2013 ACS estimates
  - ACS undercounts new veterans from 2000 to 2013
- Captures distribution of veterans by age, sex, race/ethnicity, service era, location
- Determines veteran geographic distribution and migration patterns

# **Mortality rates**

- 2014 veteran population mortality rates
  - Department of Veterans Affairs (VA)
  - By age, sex, but not race/ethnicity
- 2011 rates by age, sex, and race/ethnicity
   Centers for Disease Control and Prevention (CDC)
- Derive race/ethnicity rates based on CDC that reflect overall VA rates
- Following estimates are done for each sex...

# Steps to estimate mortality rates (1/4)

| Race/     | Distribution of veterans<br>in each age group |                |     |                |         | CDC mortality rates |                |  |                | Standardized rates<br>if veterans had same rates<br>as civilians |                |                |   |                |         |
|-----------|-----------------------------------------------|----------------|-----|----------------|---------|---------------------|----------------|--|----------------|------------------------------------------------------------------|----------------|----------------|---|----------------|---------|
| Ethnicity | 17<br>to<br>19                                | 20<br>to<br>24 |     | 80<br>to<br>84 | 85<br>+ | 17<br>to<br>19      | 20<br>to<br>24 |  | 80<br>to<br>84 | 85<br>+                                                          | 17<br>to<br>19 | 20<br>to<br>24 |   | 80<br>to<br>84 | 85<br>+ |
| White     | а                                             |                |     |                |         | b                   |                |  |                |                                                                  | a*b            |                |   |                |         |
| Black     |                                               |                |     |                |         |                     |                |  |                |                                                                  |                |                |   |                |         |
| Hispanic  |                                               |                |     |                |         |                     |                |  |                |                                                                  |                |                |   |                |         |
| Asian     |                                               |                |     |                |         |                     |                |  |                |                                                                  |                |                |   |                |         |
| Other     |                                               |                |     |                |         |                     |                |  |                |                                                                  |                |                |   |                |         |
| Total     | 1.0                                           | 1.0            | 1.0 | 1.0            | 1.0     |                     |                |  |                |                                                                  | S              | S              | S | S              | S       |

# Steps to estimate mortality rates (2/4)

|                                                            | Age group      |                |     |                |     |  |  |
|------------------------------------------------------------|----------------|----------------|-----|----------------|-----|--|--|
| Mortality rates                                            | 17<br>to<br>19 | 20<br>to<br>24 |     | 80<br>to<br>84 | 85+ |  |  |
| Standardized rates if veterans had same rates as civilians | S              | S              | S   | S              | S   |  |  |
| VA mortality rates                                         | v              | V              | V   | V              | V   |  |  |
| VA rates / Standardized rates                              | v/s            | v/s            | v/s | v/s            | v/s |  |  |

# Steps to estimate mortality rates (3/4)

 Ratio of observed veteran mortality rate to the standardized rate



# Steps to estimate mortality rates (4/4)

| Race/     |                | CDC r          | nortality | rates          |     | Adjusted mortality rates |                |  |                |     |
|-----------|----------------|----------------|-----------|----------------|-----|--------------------------|----------------|--|----------------|-----|
| Ethnicity | 17<br>to<br>19 | 20<br>to<br>24 |           | 80<br>to<br>84 | 85+ | 17<br>to<br>19           | 20<br>to<br>24 |  | 80<br>to<br>84 | 85+ |
| White     | b              |                |           |                |     | b*v/s                    |                |  |                |     |
| Black     |                |                |           |                |     |                          |                |  |                |     |
| Hispanic  |                |                |           |                |     |                          |                |  |                |     |
| Asian     |                |                |           |                |     |                          |                |  |                |     |
| Other     |                |                |           |                |     |                          |                |  |                |     |
| Ratio     | v/s            | v/s            | v/s       | v/s            | v/s |                          |                |  |                |     |

Assumption: ratio (inflation/deflation factor) by age-sex is the same across race/ethnicity groups

# **Population projection**

- 1. Standard cohort component model
  - The Census Bureau's Rural and Urban Projection (RUP) Program
  - 2000 Census provides counts of veterans (n=1,406,936)
  - New veterans (DMDC): 2000-2024
  - Apply mortality rates (VA, CDC): 2000–2024
  - Estimate national veteran population: 2005-2024
- 2. Distribute projections into PUMAs (ACS)
- 3. Adjust projections by internal migration (ACS)

# **1. National projection** (apply "births" and mortality)



# 2. Distribute national projection into PUMAs: 2014 example



- Assumption: ACS captures geographic distribution
- By 5-year age group, sex, race/ethnicity, service era

## **3. Internal migration procedures**

- Disaggregate PUMA groups in previous year
  - Correspondence files in IPUMS USA allow us to disaggregate MIGPUMAs into PUMAs
- Convert 2009–2011 PUMAs to 2010 codes
   Engine by Missouri Census Data Center
- Gravity models (2009–2013)
- Apply predicted rates to 2014 projection

# Gravity models (2009–2013)

- These models predict in- and out-migration
  - Distance is expected to play an intervening role on the levels of population flows
- Zero-inflated Poisson regressions
  - Migration as a function of age, sex, race/ethnicity, service era, and distance
  - Dummy indicates whether cell has zero migrants to control for high prevalence of cells with zero counts of migrants
  - Populations of origin/destination as exposure

# Results of age group for out-migration



# Results of service era for out-migration



Service era

# Results of race/ethnicity for out-migration



## Apply predicted rates to 2014

 Apply predicted rates from previous models to 2014 projection

• Generate number of in- and out-migrants

 Adjust in-migrants to generate null net internal migration in each year...

# **Adjust in-migrants**

- Net migration equals zero in each year
   Adjusted In-mig = In-mig \* Sum out-mig / Sum in-mig
- Assumption: out-migration counts are more accurate than in-migration counts
  - Out-migration: based on residence in previous year (PUMA group)
    - We allocated migrants at the beginning of period from MIGPUMAs into PUMAs
    - This gives higher chances of all cells having migrants

– In-migration: based on information at PUMA level

• This might generate more cells with small counts

### **Migration: final projection**

#### 2014

#### Number of in-migrants

(estimated with ACS rates and initial projection)

| PUMA | Number of in-migrants | 2<br>Initial r |
|------|-----------------------|----------------|
| 1    | ###                   |                |
| 2    | ###                   | PUMA           |
|      |                       | 1              |
| 2351 | ###                   | 2              |
|      |                       |                |

1

|                                     | 2014                      |     |  |  |  |  |  |
|-------------------------------------|---------------------------|-----|--|--|--|--|--|
| ľ                                   | Number of out-migrants    |     |  |  |  |  |  |
|                                     | (estimated with ACS rates |     |  |  |  |  |  |
| PUMANumber of1-year agoout-migrants |                           |     |  |  |  |  |  |
|                                     | 1                         | ### |  |  |  |  |  |
|                                     | 2                         | ### |  |  |  |  |  |
|                                     |                           |     |  |  |  |  |  |
|                                     | 2351                      | ### |  |  |  |  |  |

|   | 2<br>Initial p | 014<br>projection |     | Final projection<br>(after migration) |            |                  |                       |  |  |  |
|---|----------------|-------------------|-----|---------------------------------------|------------|------------------|-----------------------|--|--|--|
|   | PUMA           | Population        |     | PUMA                                  | Population | Net<br>migration | Population after mig. |  |  |  |
| Ŕ | 1              | ###               | - > | 1                                     | ###        | +/- ###          | ###                   |  |  |  |
| í | 2              | ###               |     | 2                                     | ###        | +/- ###          | ###                   |  |  |  |
| / |                |                   |     |                                       |            |                  |                       |  |  |  |
| / | 2351           | ###               |     | 2351                                  | ###        | +/- ###          | ###                   |  |  |  |
| 1 |                |                   |     |                                       | •          | •                | •                     |  |  |  |

2011

# Migration for 2015-2024

- Iterate this process for subsequent years
- Use final 2014 projection as baseline for 2015 national projection
- Apply migration rates to get final 2015 distribution
- Adjust marginal counts with weight calibration to keep national totals

Iterative proportional fitting (raking)

• Process continues through 2024

#### Main results

- Veterans will decrease by 19%
   21.6 million (2014), 17.5 million (2024)
- Mean age will increase slightly
   65+ years: 49% (2014), 52% (2024)
- Modest changes by sex and race/ethnicity
  - Males: 92% (2014), 89% (2024)
  - White: 80% (2014), 76% (2024)
- Service era composition will change
  - Vietnam: 31% (2014), 29% (2024)
  - Gulf War, Post-9/11: 27% (2014), 42% (2024)

#### Veteran population, 2014



21.6 million veterans overall



#### Veteran population, 2024



17.5 million veterans overall



#### Percentage change, 2014–2024



Overall decrease of 19%



# **Final considerations**

- Concentration in urban areas
  - Ohio River Valley and upper Midwest: proportion of veterans will diminish
  - Southwest will not be supported properly by existing VA medical centers
- Migration is less frequent among veterans than non-veterans
  - Will not play substantial role in 2014–2024 geographic distribution
- Projection methods can be applied to other contexts

### Policy recommendations: plan for shrinking population

- VA should plan for a shrinking population
- Consider alternative approaches to meeting the needs of its population
- E.g., purchase care from civilian sector even while patient population is growing

### Policy recommendations: services for specific age groups

• Overall veteran population will continue to age over the projection horizon

Health services for aging will be needed

- Younger veterans (<35) are expected to concentrate in several areas
  - Los Angeles; Dallas; Washington, DC; northern
     New Jersey; northern California; central
     Washington state; Midwest; Wyoming; Utah
  - Provide health care services for young adults

# Policy recommendations: geographic distribution

- Geographic distribution of veterans will moderately change from 2015–2024
- Areas with adequate VA health services
  - Decline of veterans: Ohio River Valley, upper Midwest
  - Growth of veterans: Washington, DC; San Antonio, Austin, TX
- Areas that need more VA health services
  - Growth of veterans: e.g., Montana, Wyoming, Colorado, Southwest

### **Current research project**

- Factors associated with internal and international migration flows at the local level
  - 1950-2000 Decennial Censuses
  - 2005-2019 American Community Surveys
  - Restricted data at the Texas Research Data Center (TXRDC)
- Autoregressive spatial models
  - Influence of neighboring areas at origin and destination on the likelihood of migrating (Anselin, Rey 2014; LeSage, Pace 2008, 2009)
  - Bayesian statistics approach (LeSage, Fischer 2016; LeSage, Satici 2016)

#### **Bayesian approach**

- Use IRS data to determine prior distributions
   IRS sample size is much larger than ACS
- Then, we can estimate models with ACS
  - More detailed information about socioeconomic and demographic characteristics

#### **Comparison between American Community Survey and IRS county-to-county migration data**

| Issue                          | ACS Migration Products                                                                                                                                                                                 | IRS Migration Data                |
|--------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| Sample size                    | Approximately 2 million households per year                                                                                                                                                            | 116 million+ households           |
| Data universe                  | Sample is all US households                                                                                                                                                                            | Universe is tax-filing households |
| Coverage period                | 2005–2016                                                                                                                                                                                              | 1990–2016                         |
| Time period reported           | Five-year average                                                                                                                                                                                      | Annual                            |
| Demographic<br>characteristics | Each five-year product reports different<br>sociodemographic characteristics (e.g., 2010–2014<br>contains relationship, household type, and tenure,<br>2011–2015 contains age/sex/race/Hispanic origin | No demographic characteristics    |

#### **Research agenda**

- Include a longitudinal analysis by linking individuals through time across censuses and surveys (Alexander et al. 2015; Logan, Stults, Xu 2016; Logan, Xu, Stults 2014; Wagner, Layne 2014)
- Intergenerational mobility among internal and international migrants (Leibbrand et al. 2019; Leibbrand et al. 2020)
- Estimate effects of our predicted migration flows on local labor, health, and educational outcomes
- Integrate external data sources to include other covariates
- Investigate Mexico-U.S. migration by merging other surveys
- Conduct **immigration policy simulations** to inform policymakers on the impacts of various policy options
- Simulate future migration flows under different hypothetical Scenarios (Massey, Zenteno 1999; Klabunde, Willekens 2016)

#### **Model migration flows**

