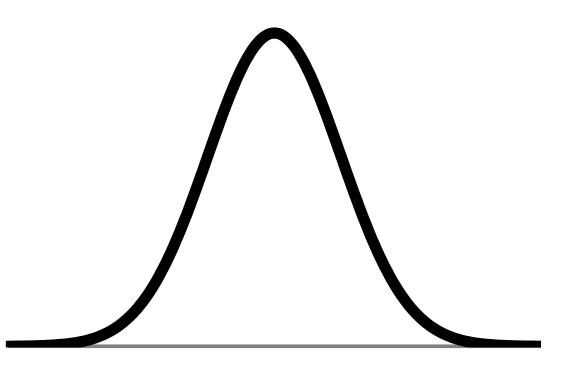
Lecture 5: The normal curve

Ernesto F. L. Amaral

February 24–26, 2025
Advanced Methods of Social Research (SOCI 420)

www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 5 (pp. 122–142).

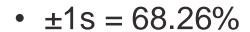

Outline

- Define and explain the concept of the normal curve
- Convert empirical scores to Z scores
- Use Z scores and the normal curve table (Appendix A) to find areas above, below, and between points on the curve
- Express areas under the curve in terms of probabilities

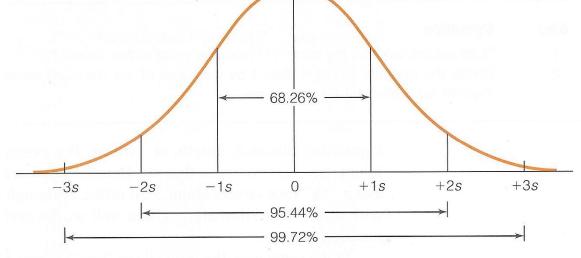
Properties of the normal curve

- Theoretical
- Bell-shaped
- Unimodal
- Smooth
- Symmetrical
- Unskewed
- Tails extend to infinity
- Mode, median, and mean are same value

Normal distribution formula


$$f(x)=rac{1}{\sigma\sqrt{2\pi}}e^{-rac{1}{2}(rac{x-\mu}{\sigma})^2}$$

- f(x) = Probability density function
- σ = Standard deviation
- $\mu = Mean$


Standard normal distribution

- Normal distribution with $\bar{X}=0$ and s=1
 - Distances on horizontal axis cut off the same area

•
$$\pm 2s = 95.44\%$$

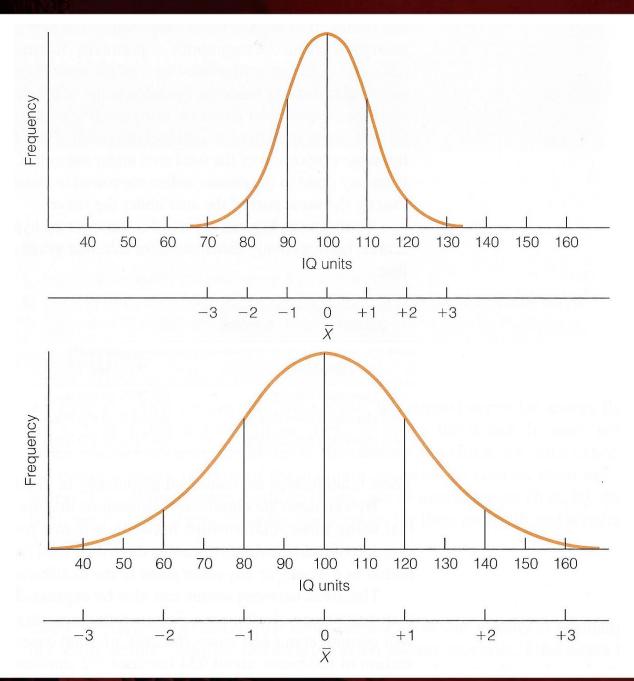
•
$$\pm 3s = 99.72\%$$

- Between mean & 1s = 34.13%
- Between mean & 2s = 47.72%
- Between mean & 3s = 49.86%

IQ scores, females

$$\bar{X} = 100$$

$$s = 10$$


$$N = 1000$$

IQ scores, males

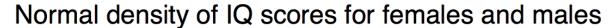
$$\bar{X} = 100$$

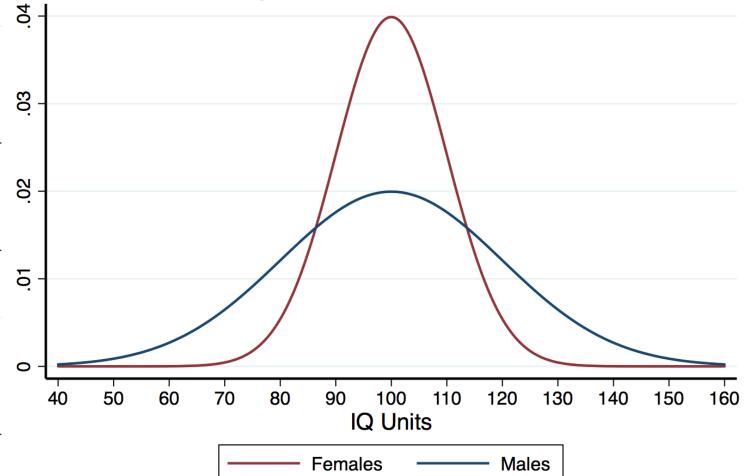
$$s = 20$$

$$N = 1000$$

$$\bar{X} = 100$$

$$s = 10$$

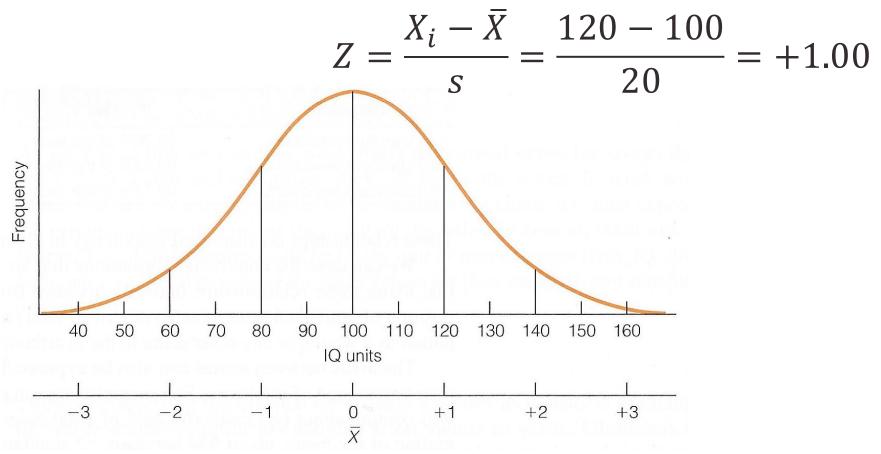

$$N = 1000$$


IQ scores, males

$$\bar{X} = 100$$

$$s = 20$$

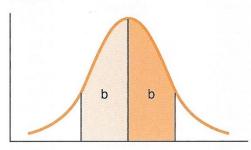
$$N = 1000$$


Z scores

- Z scores are scores that have been standardized to the theoretical normal curve
- Z scores represent how different a raw score is from the mean in standard deviation units
- To find areas, first compute Z scores
- The Z score formula changes a raw score to a standardized score

$$Z = \frac{X_i - \bar{X}}{s}$$

IQ for males


 An IQ score of 120 falls one standard deviation above (to the right of) the mean

Area under the normal curve

 Compute the Z score

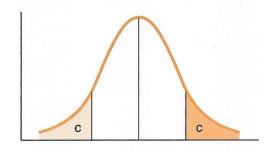
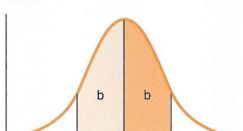

- Draw a
 picture of the
 normal curve
 and shade in
 the area in
 which you are
 interested
- Find your Z score in Column A...

FIGURE A.1 Area Between Mean and Z

(a) <i>Z</i>	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond Z
0.00	0.0000	0.5000
0.01	0.0040	0.4960
0.02	0.0080	0.4920
0.03	0.0120	0.4880
0.04	0.0160	0.4840
0.05	0.0199	0.4801
0.06	0.0239	0.4761
0.07	0.0279	0.4721
0.08	0.0319	0.4681
0.09	0.0359	0.4641
0.10	0.0398	0.4602
0.11	0.0438	0.4562
0.12	0.0478	0.4522
0.13	0.0517	0.4483
0.14	0.0557	0.4443
0.15	0.0596	0.4404
0.16	0.0636	0.4364
0.17	0.0675	0.4325
0.18	0.0714	0.4286
0.19	0.0753	0.4247
0.20	0.0793	0.4207


FIGURE A.2 Area Beyond Z

(a) Z	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond <i>Z</i>
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34	0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.1179 0.1217 0.1255 0.1293 0.1331	0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3839 0.3859 0.3859 0.3783 0.3745 0.3707 0.3669
0.35 0.36 0.37 0.38 0.39 0.40	0.1368 0.1406 0.1443 0.1480 0.1517 0.1554	0.3632 0.3594 0.3557 0.3520 0.3483 0.3446
	• • • •	•••

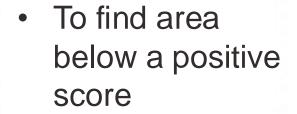

Positive score

FIGURE A.1 Area Between Mean and Z

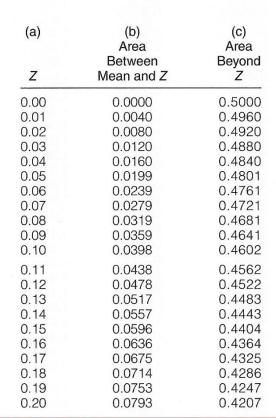


FIG	UR	E A.	2 Are	a Be	yond	Z

- Add column b
 area to 0.50
- To find area above a positive score
 - Look in column c

	С	С
(a) Z	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond Z
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632

0.1406

0.1443

0.1480

0.1517

0.1554

0.36

0.37

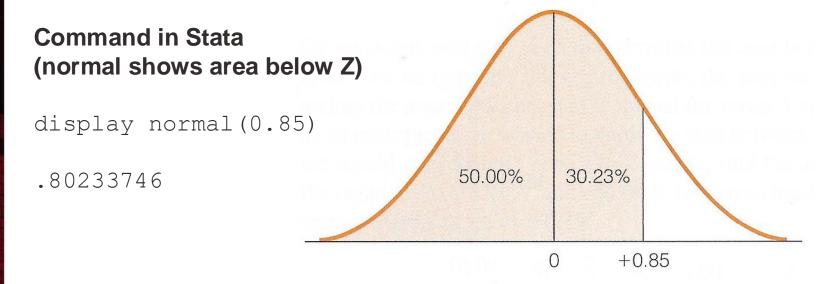
0.38

0.39

0.40

0.3594

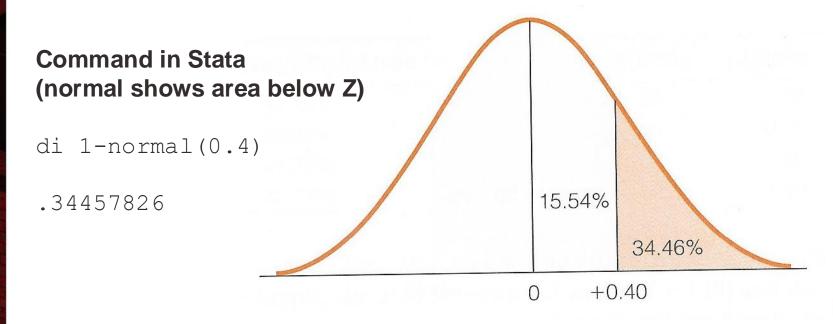
0.3557


0.3520

0.3483

0.3446

Area below Z = 0.85


- Finding the area below a positive Z score:
 - Z = +0.85
 - Area from column b = 0.3023
 - 0.50 + 0.3023 = 0.8023 or 80.23%

Area above Z = 0.40

- Finding the area above a positive Z score
 - Z = +0.40
 - Area from column c = 0.3446 or 34.46%

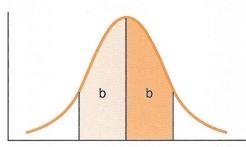
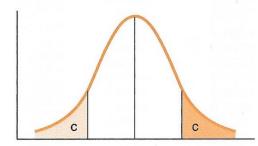
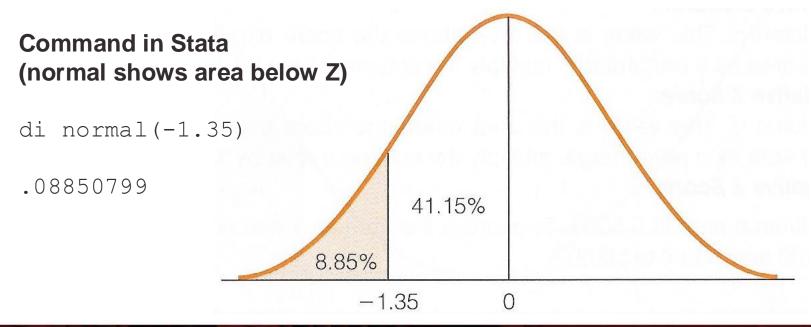

Negative score

FIGURE A.1 Area Between Mean and Z



- To find area below a negative score
 - Look in column c
- To find area above a negative score
 - Add column b area to 0.50

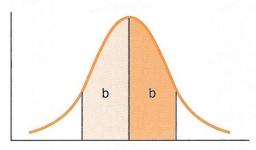
(a) <i>Z</i>	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond Z
0.00	0.0000	0.5000
0.01	0.0040	0.4960
0.02	0.0080	0.4920
0.03	0.0120	0.4880
0.04	0.0160	0.4840
0.05	0.0199	0.4801
0.06	0.0239	0.4761
0.07	0.0279	0.4721
0.08	0.0319	0.4681
0.09	0.0359	0.4641
0.10	0.0398	0.4602
0.11	0.0438	0.4562
0.12	0.0478	0.4522
0.13	0.0517	0.4483
0.14	0.0557	0.4443
0.15	0.0596	0.4404
0.16	0.0636	0.4364
0.17	0.0675	0.4325
0.18	0.0714	0.4286
0.19	0.0753	0.4247
0.20	0.0793	0.4207


FIGURE A.2 Area Beyond Z	FIGURE	A.2	Area	Beyor	nd Z
--------------------------	---------------	------------	------	-------	------

(a) Z	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond Z
0.21 0.22 0.23 0.24 0.25 0.26 0.27 0.28 0.29 0.30 0.31 0.32 0.33 0.34 0.35 0.36 0.37	0.0832 0.0871 0.0910 0.0948 0.0987 0.1026 0.1064 0.1103 0.1141 0.1179 0.1217 0.1255 0.1293 0.1331 0.1368 0.1406 0.1443	0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3836 0.3897 0.3859 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557
0.38 0.39 0.40	0.1480 0.1517 0.1554	0.3520 0.3483 0.3446

Area below Z = -1.35

- Finding the area below a negative Z score
 - Z = -1.35
 - Area from column c = 0.0885 or 8.85%



Between scores, opposite sides

of mean

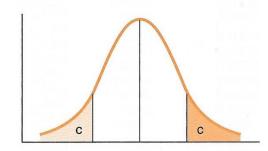
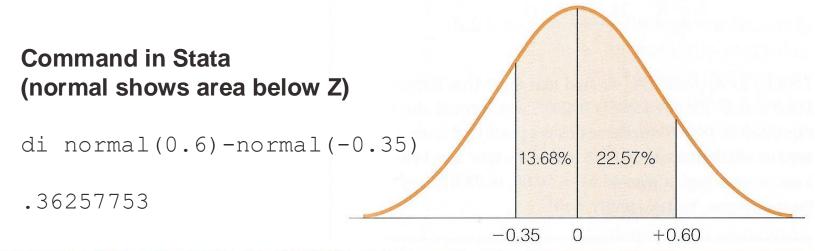

- Find your Z scores in Column A
- To find area
 between two scores
 on opposite sides
 of the mean
 - Find the areas
 between each score
 and the mean from
 column b
 - Add the two areas

FIGURE A.1 Area Between Mean and Z

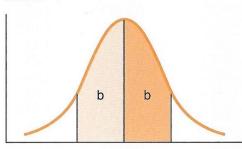
	(a)	(b) Area	(c) Area
5	Z	Between Mean and <i>Z</i>	Beyond Z
è	0.00	0.0000	0.5000
	0.01	0.0040	0.4960
	0.02	0.0080	0.4920
	0.03	0.0120	0.4880
	0.04	0.0160	0.4840
	0.05	0.0199	0.4801
	0.06	0.0239	0.4761
	0.07	0.0279	0.4721
	0.08	0.0319	0.4681
	0.09	0.0359	0.4641
	0.10	0.0398	0.4602
	0.11	0.0438	0.4562
	0.12	0.0478	0.4522
	0.13	0.0517	0.4483
	0.14	0.0557	0.4443
	0.15	0.0596	0.4404
	0.16	0.0636	0.4364
	0.17	0.0675	0.4325
	0.18	0.0714	0.4286
	0.19	0.0753	0.4247
	0.20	0.0793	0.4207


FIGURE	A.2	Area	Bey	ond	Z

(a) Z	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond <i>Z</i>
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632
0.36	0.1406	0.3594
0.37	0.1443	0.3557
0.38	0.1480	0.3520
0.39	0.1517	0.3483
0.40	0.1554	0.3446
•••	•••	• • •

Area between two scores, opposite sides of mean

- Finding the area between Z scores on different sides of the mean
 - Z = -0.35, area from column b = 0.1368
 - Z = +0.60, area from column b = 0.2257
 - Area = 0.1368 + 0.2257 = 0.3625 or 36.25%



Between scores, same side of

mean

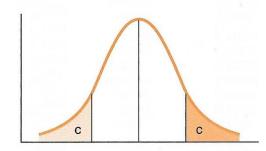
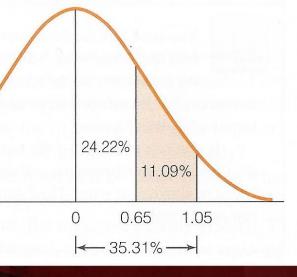

- Find your Z scores in Column A
- To find area
 between two scores
 on the same side of
 the mean
 - Find the area
 between each score
 and the mean from
 column b
 - Subtract the smaller area from the larger area

FIGURE A.1 Area Between Mean and Z

S	(a) 	(b) Area Between Mean and Z	(c) Area Beyond Z
3	0.00 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.10	0.0000 0.0040 0.0080 0.0120 0.0160 0.0199 0.0239 0.0279 0.0319 0.0359 0.0398	0.5000 0.4960 0.4920 0.4880 0.4840 0.4761 0.4761 0.4681 0.4641 0.4602
•	0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.20	0.0438 0.0478 0.0517 0.0557 0.0596 0.0636 0.0675 0.0714 0.0753 0.0793	0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247 0.4207

FIGURE A.2 Area Beyond Z

(a) Z	(b) Area Between Mean and <i>Z</i>	(c) Area Beyond <i>Z</i>
0.21	0.0832	0.4168
0.22	0.0871	0.4129
0.23	0.0910	0.4090
0.24	0.0948	0.4052
0.25	0.0987	0.4013
0.26	0.1026	0.3974
0.27	0.1064	0.3936
0.28	0.1103	0.3897
0.29	0.1141	0.3859
0.30	0.1179	0.3821
0.31	0.1217	0.3783
0.32	0.1255	0.3745
0.33	0.1293	0.3707
0.34	0.1331	0.3669
0.35	0.1368	0.3632
0.36	0.1406	0.3594
0.37	0.1443	0.3557
0.38	0.1480	0.3520
0.39	0.1517	0.3483
0.40	0.1554	0.3446
• • •	• • •	• • •


Area between two scores, same side of mean

- Finding the area between Z scores on the same side of the mean
 - Z = +0.65, area from column b = 0.2422
 - Z = +1.05, area from column b = 0.3531
 - Area = 0.3531 0.2422 = 0.1109 or 11.09%

di normal(1.05)-normal(0.65)

.11098705

Estimating probabilities

Areas under the curve can also be expressed as probabilities

- Probabilities are proportions
 - They range from 0.00 to 1.00

- The higher the value, the greater the probability
 - The more likely the event

Example

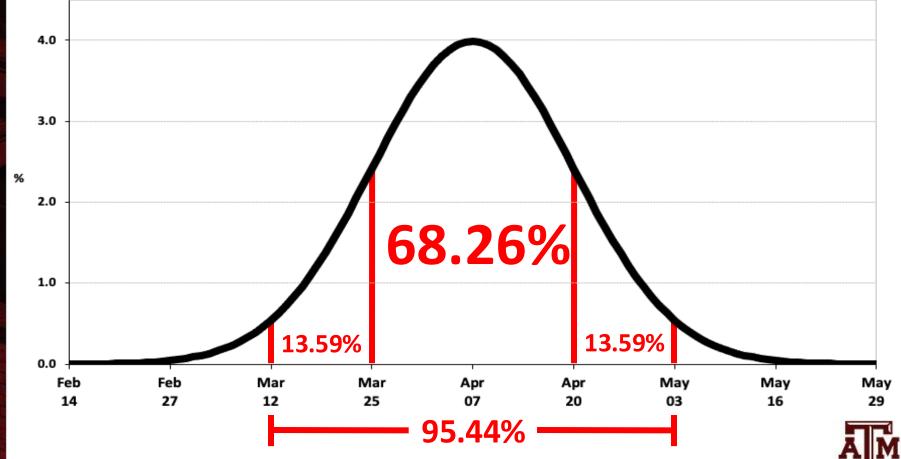
- If a distribution has mean equals to 13 and standard deviation equals to 4
- What is the probability of randomly selecting a score of 19 or more?

$$Z = \frac{X_i - \bar{X}}{s} = \frac{19 - 13}{4} = \frac{6}{4} = 1.5$$

Command in Stata (normal shows area below Z)

$$di 1-normal(1.5)$$

$$p = 0.0668072$$


Estimated date of delivery, 2017

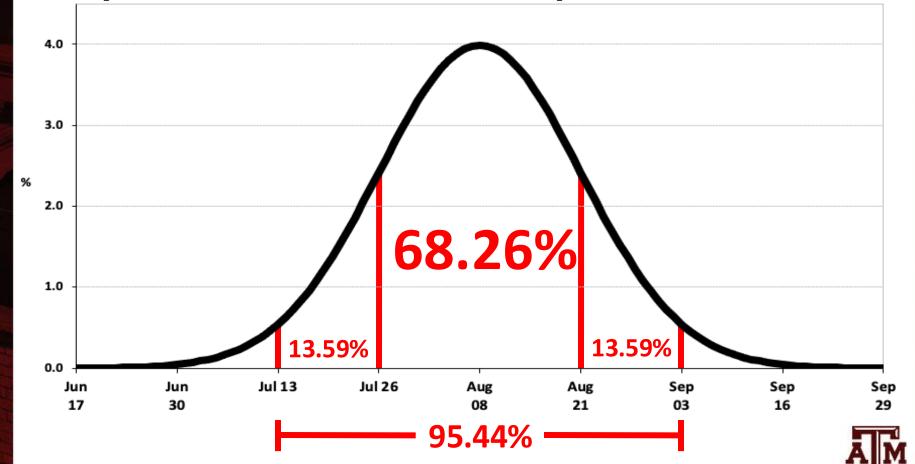
Probability up to April 03

z1=(248-252)/13di normal(-0.31) p = 0.3782805 = 37.83%

Probability between April 02-03

z1=(248-252)/13; z2=(247-252)/13di normal(-0.31)-normal(-0.39) p=0.0300122=3.00%

Mean = 252 days (36 weeks); Std.Dev. = 13 days (based on Naegele's rule)


Estimated date of delivery, 2023

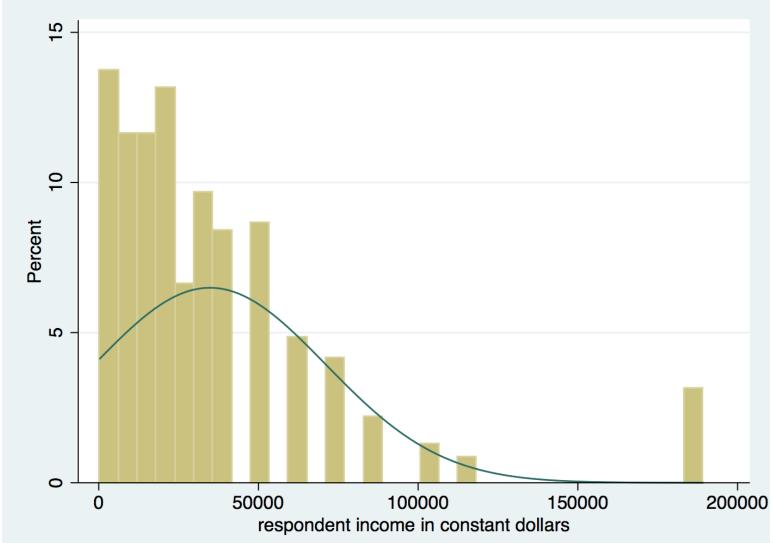
Probability up to June 30

z1=(242-281)/13di normal(-3) p = 0.0013499 = 0.14%

Probability between June 29–30

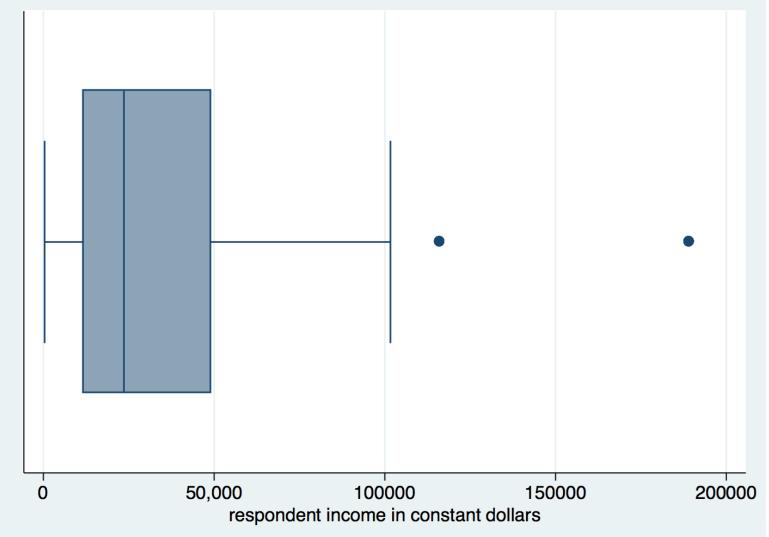
z1=(242-281)/13; z2=(241-281)/13di normal(-3)-normal(-3.08) p=0.0003149=0.03%

Mean = 281 days (~40 weeks); Std.Dev. = 13 days (based on Naegele's rule)


Determining normality

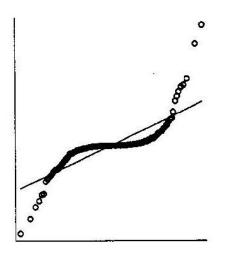
 Some statistical methods require random selection of respondents from a population with normal distribution for its variables

 We can analyze histograms, boxplots, outliers, quantile-normal plots to determine if variables have a normal distribution

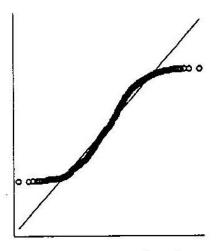


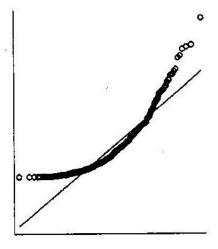
Histogram of income

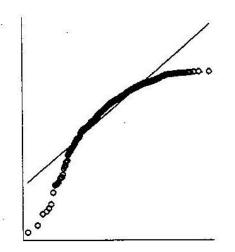
Boxplot of income

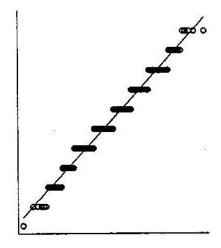


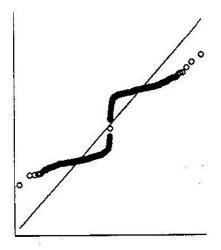
Quantile-normal plots


- A quantile-normal plot is a scatter plot
 - One axis has quantiles of the original data
 - The other axis has quantiles of the normal distribution
- If the points do not form a straight line or if the points have a non-linear symmetric pattern
 - The variable does not have a normal distribution
- If the pattern of points is roughly straight
 - The variable has a distribution close to normal
- If the variable has a normal distribution
 - The points would exactly overlap the diagonal line

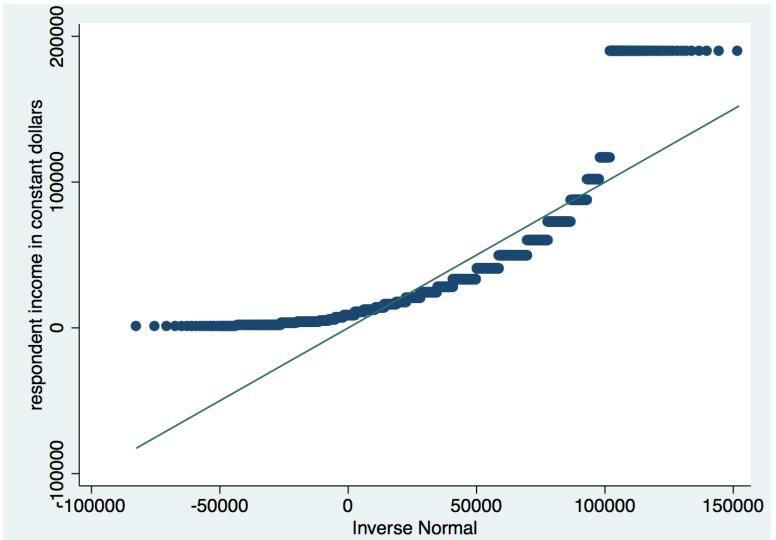

Quantile-normal plots reflect distribution shapes


Heavy Tails, High and Low Outliers


Light Tails, No Outliers


Positive Skew, High Outliers

Negative Skew, Low Outliers



Granularity (discrete values)

Two Peaks, Central Gap (bimodal)

Quantile-normal plot of income

Power transformation

Lawrence Hamilton ("Regression with Graphics", 1992, p.18–19)

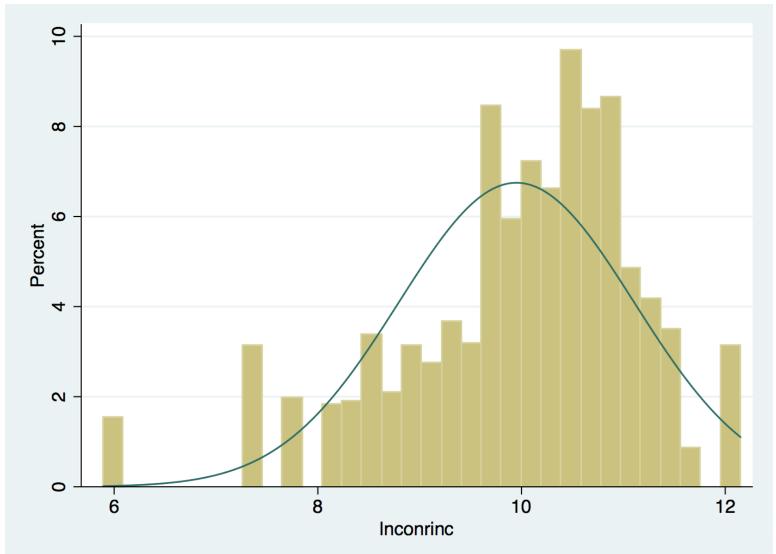
$$Y^{3} \rightarrow q = 3$$

$$Y^{2} \rightarrow q = 2$$

$$Y^{1} \rightarrow q = 1$$

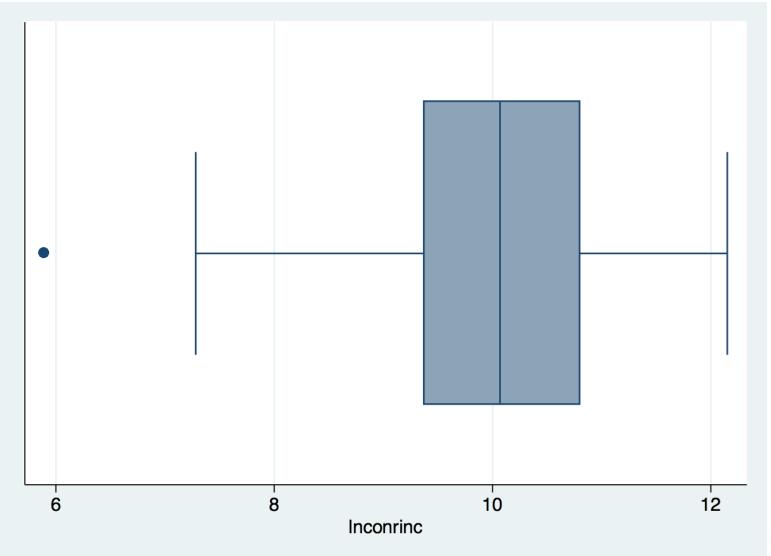
$$Y^{0.5} \rightarrow q = 0.5$$

$$\log(Y) \rightarrow q = 0$$

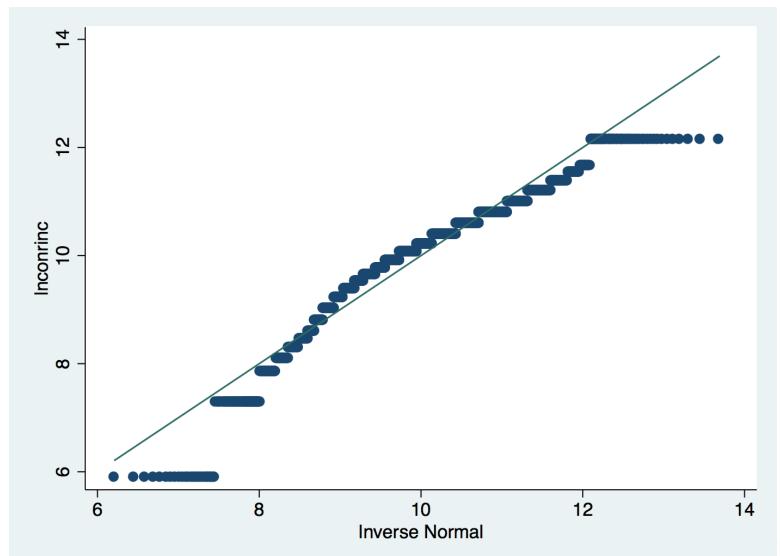

$$-(Y^{-0.5}) \rightarrow q = -0.5$$

$$-(Y^{-1}) \rightarrow q = -1$$

- q>1: reduce concentration on the right (reduce negative skew)
- q=1: original data
- q<1: reduce concentration on the left (reduce positive skew)
- log(x+1) may be applied when x=0. If distribution of log(x+1) is normal, it is called lognormal distribution



Histogram of log of income



Boxplot of log of income

Quantile-normal plot of log of income

Points to remember

 Cases with scores close to the mean are common and those with scores far from the mean are rare

 The normal curve is essential for understanding inferential statistics in Part II of the textbook

