Lecture 8: Hypothesis testing: One-sample case

Ernesto F. L. Amaral

March 03–19, 2025
Advanced Methods of Social Research (SOCI 420)

www.ernestoamaral.com

Source: Healey, Joseph F. 2015. "Statistics: A Tool for Social Research." Stamford: Cengage Learning. 10th edition. Chapter 8 (pp. 185–215).

Outline

- Explain the logic of hypothesis testing, including concepts of the null hypothesis, the sampling distribution, the alpha level, and the test statistic
- Explain what it means to "reject the null hypothesis" or "do not reject the null hypothesis"
- Identify and cite examples of situations in which one-sample tests of hypotheses are appropriate
- Test the significance of single-sample means and proportions using the five-step model, and correctly interpret the results
- Explain the difference between one- and two-tailed tests, and specify when each is appropriate
- Define and explain Type I and Type II errors, and relate each to the selection of an alpha level
- Use the Student's t distribution to test the significance of a sample mean for a small sample

Significant differences

- Hypothesis testing is designed to detect significant differences
 - Differences that did not occur by random chance
 - Hypothesis testing is also called significance testing
- This chapter focuses on the "one sample" case
 - Compare a random sample against a population
 - Compare a sample statistic to a (hypothesized)
 population parameter to see if there is a statistically significant difference

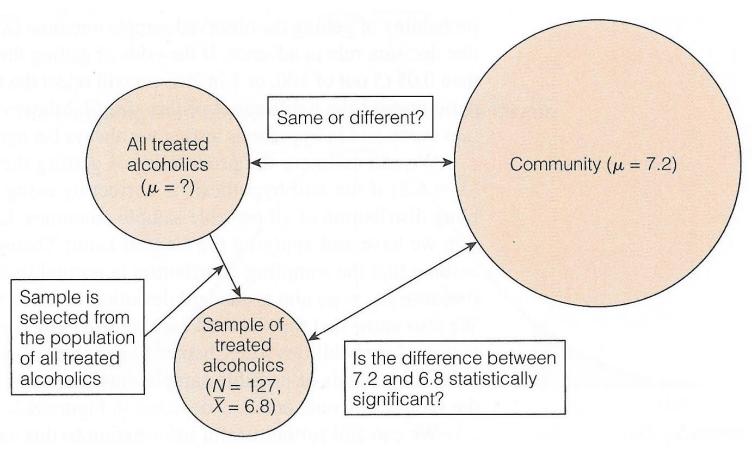
Example 1: Question

- Are people who have been treated for alcoholism more reliable workers than those in the community?
 - Does the group of all treated alcoholics have different absentee rates than the community as a whole?
 - Effectiveness of rehabilitation center for alcoholics
- Absentee rates for community and sample
 - Don't have resources to gather information of all people who have been treated by the program

Community	Sample of treated alcoholics
$\mu = 7.2$ days per year	$\bar{X} = 6.8 \ days \ per \ year$
$\sigma = 1.43$	n = 127

- What causes the difference between 7.2 and 6.8?
 - Real difference? Or difference due to random chance?

A test of hypothesis for single-sample means



Example 1: Result

- For a known/empirical distribution, we use: $Z = \frac{X_i X}{s}$
- However, we are concerned with the sampling distribution of all possible sample means

- The sample outcome falls in the shaded area
 - Z(obtained) = -3.15
 - Reject H_0 : μ = 7.2 days per year
 - The sample of 127 treated alcoholics comes from a population that is significantly different from the community on absenteeism

The five-step model

- 1. Make assumptions and meet test requirements
- 2. Define the null hypothesis (H₀)
- 3. Select the sampling distribution and establish the critical region
- 4. Compute the test statistic
- 5. Make a decision and interpret the test results

Example 2: Question

- The education department at a university has been accused of "grade inflation"
 - Thus, education majors have much higher GPAs than students in general
- GPAs of all education majors should be compared with the GPAs of all students
 - There are 1000s of education majors, far too many to interview
 - How can the dispute be investigated without interviewing all education majors?

Example 2: Numbers

- The average GPA for all students is 2.70 (μ)
 - This value is a parameter
- Random sample of education majors
 - Mean = \bar{X} = 3.00
 - Standard deviation = s = 0.70
 - Sample size = n = 117
- There is a difference between parameter $(\mu=2.70)$ and statistic $(\bar{X}=3.00)$
 - It seems that education majors do have higher GPAs

Example 2: Explanations

- We are working with a random sample
 - Not all education majors
- Two explanations for the difference
- 1. The sample mean (\bar{X} =3.00) is the same as the population mean (μ =2.70)
 - The observed difference may have been caused by random chance
- 2. The difference is real (statistically significant)
 - Education majors are different from all students

Step 1: Assumptions, requirements

- Make assumptions
 - Random sampling
 - Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
 - The sample of 117 was randomly selected from all education majors
 - Level of measurement is interval-ratio
 - GPA is an interval-ratio level variable, so the mean is an appropriate statistic
 - Sampling distribution is normal in shape
 - This is a large sample $(n \ge 100)$

Step 2: Null hypothesis

- Null hypothesis, H_0 : $\mu = 2.7$
 - H₀ always states there is no significant difference
 - The sample of 117 comes from a population that has a GPA of 2.7
 - The difference between 2.7 and 3.0 is trivial and caused by random chance
- Alternative hypothesis, H_1 : $\mu \neq 2.7$
 - H₁ always contradicts H₀
 - The sample of 117 comes from a population that does not have a GPA of 2.7
 - There is an actual difference between education majors (\bar{X} =3.0) and other students (μ =2.7)

Step 3: Distribution, critical region

- Sampling distribution: standard normal shape
 - Alpha (α) = 0.05
 - Use the 0.05 value as a guideline to identify differences that would be rare if H₀ is true
 - Any difference with a probability less than α is rare and will cause us to reject the H_0
- Use the Z score to determine the probability of getting the observed difference
 - If the probability is less than 0.05, the obtained Z score will be beyond the critical Z score of ± 1.96
 - This is the critical Z score associated with a two-tailed test and α =0.05

Step 4: Test statistic

For a known/empirical distribution, we would use

$$Z = \frac{X_i - \bar{X}}{S}$$

- However, we are concerned with the sampling distribution of all sample means
- We only have the standard deviation for the sample (s), not for the population (σ)

$$Z(obtained) = \frac{\bar{X} - \mu}{s/\sqrt{n-1}} = \frac{3.0 - 2.7}{0.7/\sqrt{117 - 1}} = 4.62$$

Step 5: Decision, interpret

- Z(obtained) = 4.62
 - This is beyond $Z(critical) = \pm 1.96$
 - The obtained Z score fell in the critical region, so we reject the H₀
 - If H₀ was true, a sample GPA of 3.0 would be unlikely
 - Therefore, the H₀ is false and must be rejected
- Education majors have a GPA that is significantly higher than general student body
 - The difference between the parameter (μ =2.7) and the statistic (\bar{X} =3.0) was large and unlikely to have occurred by random chance (p<0.05)

Five-step model summary

Situation	Decision	Interpretation
The test statistic is in the critical region	Reject the null hypothesis (H ₀)	The difference is statistically significant
The test statistic is not in the critical region	Do not reject the null hypothesis (H ₀)	The difference is not statistically significant

- Model is fairly rigid, but there are two crucial choices
 - One-tailed or two-tailed test
 - Alpha (α) level

One or two-tailed test

Null hypothesis always has the equal sign

$$H_0$$
: $\mu = 2.7$

 Two-tailed test states that population mean is not equal to the value stated in null hypothesis

$$H_1$$
: $\mu \neq 2.7$

 One-tailed test estimates differences in a specific direction (based on theory)

$$H_1$$
: $\mu > 2.7$

$$H_1$$
: μ < 2.7

One or two-tailed test

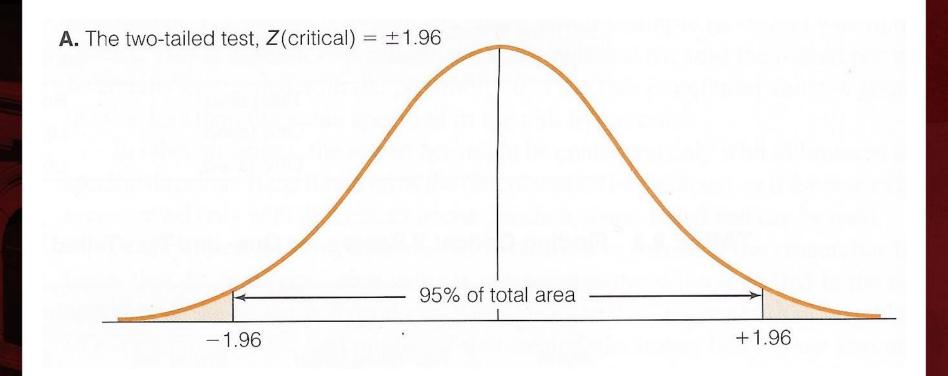
One- vs. Two-Tailed Tests, $\alpha = 0.05$

If the Research Hypothesis (H_1) Uses	The Test Is	Concern Is on	Z(critical) Is	
<i>≠</i>	Two-tailed	Both tails	±1.96	
>	One-tailed	Upper tail	+1.65	
<	One-tailed	Lower tail	-1.65	

Finding Critical Z Scores for One- and Two-Tailed Tests

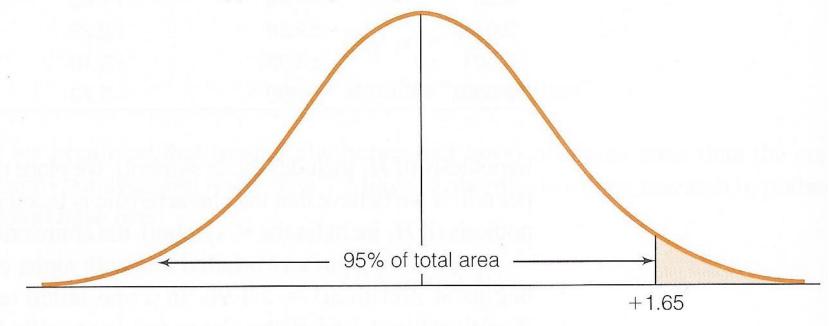
		One-Tailed Value		
Alpha	Two-Tailed Value	Upper Tail	Lower Tail	
0.10	±1.65	+1.29	-1.29	
0.05	±1.96	+1.65	-1.65	
0.01	±2.58	+2.33	-2.33	
0.001	±3.32	+3.10	-3.10	
0.0001	±3.90	+3.70	-3.70	

Two-tailed test: α =0.05



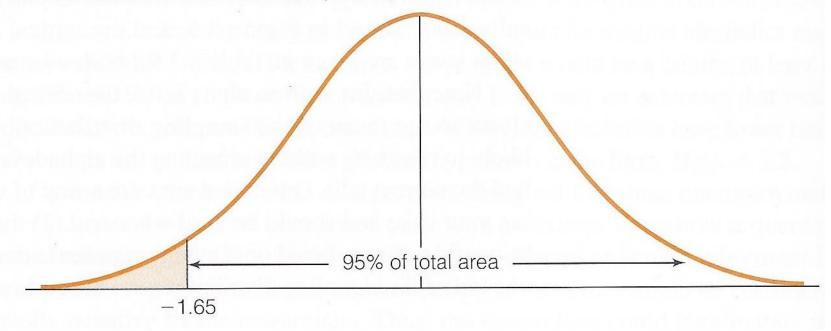
One-tailed test (upper): α =0.05

B. The one-tailed test for upper tail, Z(critical) = +1.65



One-tailed test (lower): α =0.05

C. The one-tailed test for lower tail, Z(critical) = -1.65



Selecting an alpha level

- By assigning an alpha level, one defines an "unlikely" sample outcome
- Alpha level is the probability that the decision to reject the null hypothesis is incorrect
- Examine this table for critical regions

The Relationship Between Alpha and Z(Critical) for a Two-Tailed Test

If Alpha =	The Two-Tailed Critical Region Will Begin at $Z(Critical) =$
0.100	±1.65
0.050	±1.96
0.010	±2.58
0.001	±3.32

Type I and Type II errors

- Type I error (alpha error)
 - Rejecting a true null hypothesis
- Type II error (beta error)
 - Not rejecting a false null hypothesis
- Examine table below for relationships between decision making and errors

Decision Making and the Five-Step Model

	If Our Decision Is to	And H_0 is Actually	The Result Is
а	Reject H ₀	False	OK
b	Fail to reject H_0	True	OK
C	Reject H ₀	True	Type I or alpha (α) error
d	Fail to reject H_0	False	Type II or beta (β) error

Decisions about hypotheses

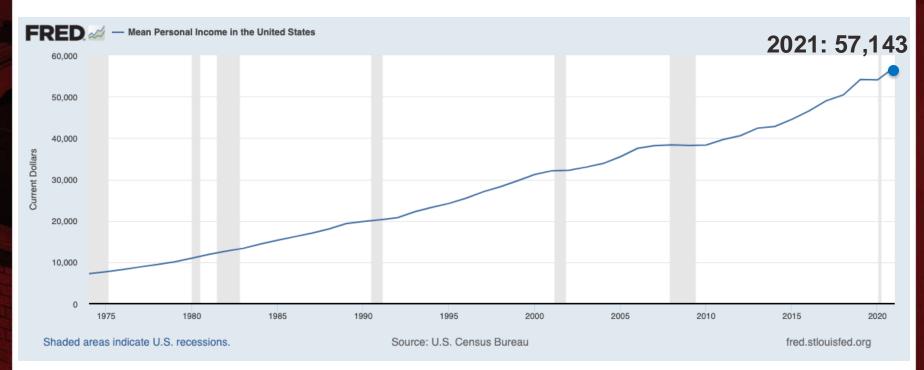
Hypotheses	p < α	<i>p</i> > α
Null hypothesis (H ₀)	Reject	Do not reject
Alternative hypothesis (H ₁)	Accept	Do not accept

- p-value is the probability of not rejecting the null hypothesis
- If a statistical software gives only the twotailed p-value, divide it by 2 to obtain the onetailed p-value

Significance level (α)	Confidence level
0.10 (10%)	90%
0.05 (5%)	95%
0.01 (1%)	99%
0.001 (0.1%)	99.9% AM

Example 3: Income, 2021

- Is the mean personal income of Veterans (GSS) lower than mean income of population 15+ (Census Bureau)?
- We know the income for the <u>population 15+</u>



Source: U.S. Census Bureau, Mean Personal Income in the United States [MAPAINUSA646N], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/MAPAINUSA646N, October 24, 2022. Shaded areas indicate U.S. recessions.

Example 3: Census & GSS

- We know the income for the <u>2021 GSS sample of</u> <u>Veterans</u>
- . mean conrinc if veteran==1

Mean estimation

Number of obs = 229

	Mean	Std. err.	[95% conf.	interval]
conrinc	49562.49	2932.717	43783.8	55341.19

- What causes the difference between \$57,143.00 (pop.15+, Census) and \$49,562.49 (Veterans, GSS)?
- Real difference? Or difference due to random chance?

Example 3: Result

- Veteran population has mean income that is significantly lower than mean income of the population 15+
 - The difference between the parameter \$57,143.00 and the statistic \$49,562.49 was large and unlikely to have occurred by random chance (p-value<0.05)
- . ztest conrinc=57143 if veteran==1

One-sample z test

Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
conrinc	229	49562.49	.0660819	1	49562.36	49562.62

```
mean = mean(conrinc)
```

z = -1.1e+05

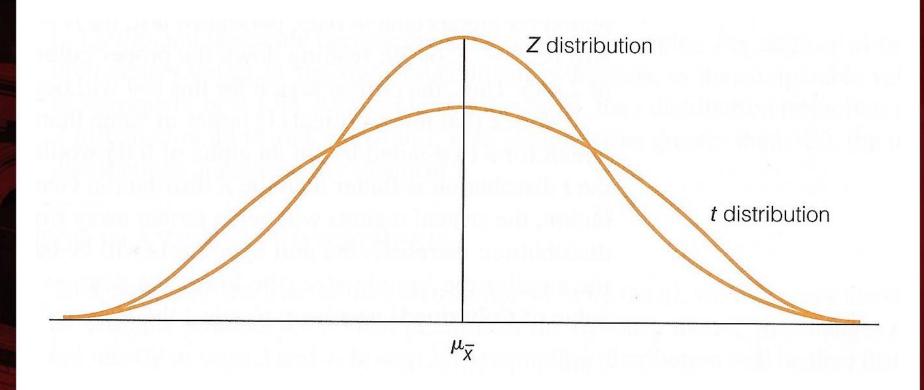
H0: mean = 57143

Ha: mean < 57143Pr(Z < z) = 0.0000 Ha: mean != 57143Pr(|Z| > |z|) = 0.0000 Ha: mean > 57143Pr(Z > z) = 1.0000

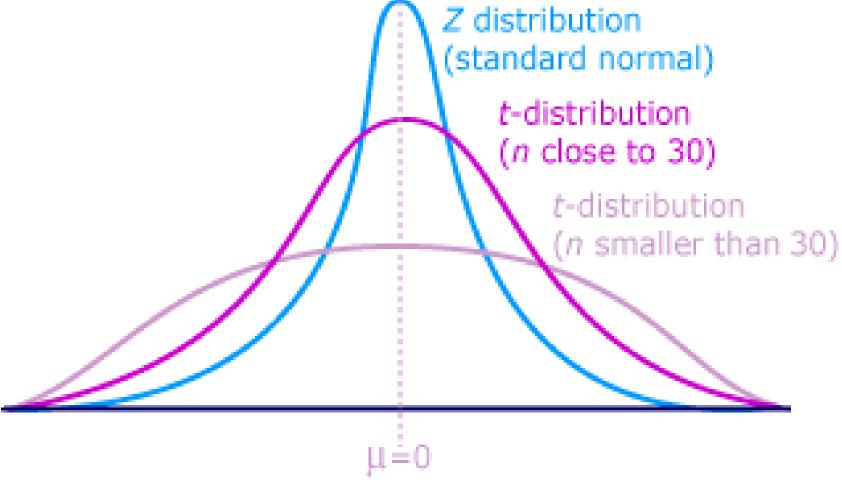
The Student's t distribution

- How can we test a hypothesis when the population standard deviation (σ) is unknown, as is usually the case?
- For large samples ($n \ge 100$), we can use the sample standard deviation (s) as an estimator of the population standard deviation (σ)
 - Use standard normal distribution (Z)
- For small samples, s is too biased to estimate σ
 - Do not use standard normal distribution
 - Use Student's t distribution

t and Z distributions



t and Z distributions



Choosing the distribution

 Choosing a sampling distribution when testing single-sample means for significance

If population standard deviation (σ) is	Sampling distribution is the
Known	Z distribution
Unknown and sample size (n) is large	Z distribution
Unknown and sample size (n) is small	t distribution

Example 4: With *t*-test

- This is the same as example 3, but with *t*-test
 - GSS has a large sample. This is just an illustration
- Veteran population has mean income that is significantly lower than mean income of the population 15+ (p-value<0.05)
- . ttest conrinc=57143 if veteran==1

One-sample t test

Variable	0bs	Mean	Std. err.	Std. dev.	[95% conf.	interval]
conrinc	229	49562.49	2932.717	44380.07	43783.8	55341.19

mean = mean(conrinc)

t = **-2.5848**

H0: mean = 57143

Degrees of freedom = 228

Ha: mean < 57143Pr(T < t) = 0.0052 Ha: mean != 57143Pr(|T| > |t|) = 0.0104

Ha: mean > 57143Pr(T > t) = 0.9948

Five-step model for proportions

- When analyzing variables that are not measured at the interval-ratio level
 - A mean is inappropriate
 - We can test a hypothesis on a one sample proportion
- The five step model remains primarily the same, with the following changes
 - The assumptions are: random sampling, nominal level of measurement, and normal sampling distribution
 - The formula for Z is

$$Z = \frac{P_S - P_u}{\sqrt{P_u(1 - P_u)/n}}$$

Example 5: Proportions

 A random sample of 122 households in a lowincome neighborhood revealed that 53 of the households were headed by women

$$-P_s = 53 / 122 = 0.43$$

- In the city as a whole, the proportion of womenheaded households (P_u) is 0.39
- Are households in lower-income neighborhoods significantly different from the city as a whole?
- Conduct a 90% hypothesis test ($\alpha = 0.10$)

Step 1: Assumptions, requirements

- Make assumptions
 - Random sampling
 - Hypothesis testing assumes samples were selected according to EPSEM
- Meet test requirements
 - The sample of 122 was randomly selected from all lower-income neighborhoods
 - Level of measurement is nominal
 - Women-headed households is measured as a proportion
 - Sampling distribution is normal in shape
 - This is a large sample $(n \ge 100)$

Step 2: Null hypothesis

- Null hypothesis, H_0 : $P_u = 0.39$
 - The sample of 122 comes from a population where 39% of households are headed by women
 - The difference between 0.43 and 0.39 is trivial and caused by random chance
- Alternative hypothesis, H_1 : $P_u \neq 0.39$
 - The sample of 122 comes from a population where the percent of women-headed households is not 39
 - The difference between 0.43 and 0.39 reflects an actual difference between lower-income neighborhoods and all neighborhoods

Step 3: Distribution, critical region

- Sampling distribution
 - Standard normal distribution (Z)
- Alpha (α) = 0.10 (two-tailed)
- Critical region begins at $Z(critical) = \pm 1.65$
 - This is the critical Z score associated with a two-tailed test and alpha equal to 0.10
 - If the obtained Z score falls in the critical region, we reject H₀

Step 4: Test statistic

Proportion of households headed by women

City	Sample in a low-income neighborhood	
$P_u = 0.39$	$P_s = 0.43$	
	n = 122	

The formula for Z is

$$Z = \frac{P_s - P_u}{\sqrt{P_u(1 - P_u)/n}} = \frac{0.43 - 0.39}{\sqrt{0.39(1 - 0.39)/122}} = 0.91$$

Step 5: Decision, interpret

- Z(obtained) = 0.91
 - Z(obtained) did not fall in the critical region delimited by $Z(critical) = \pm 1.65$, so we **do not reject** the H₀
 - This means that if H₀ was true, a sample outcome of 0.43 would be likely
 - Therefore, the H₀ is not false and cannot be rejected
- The population of women-headed households in lower-income neighborhoods is not significantly different from the city as a whole
 - The difference between the parameter (P_u =0.39) and the statistic (P_s =0.43) was small and likely to have occurred by random chance (p>0.10)

Example 6: Sex, 2021

- Is the female proportion of the adult population (18+) in the U.S. higher than among the total population?
- We know the percentage of women for the <u>population</u>

PEOPLE	
Population	
Population Estimates, July 1 2021, (V2021)	⚠ 331,893,745
i Population estimates base, April 1, 2020, (V2021)	△ 331,449,281
Population, percent change - April 1, 2020 (estimates base) to July 1, 2021, (V2021)	₾ 0.1%
Population, Census, April 1, 2020	331,449,281
i Population, Census, April 1, 2010	308,745,538
Age and Sex	
i Persons under 5 years, percent	₾ 5.7%
i Persons under 18 years, percent	22.2%
Persons 65 years and over, percent	⚠ 16.8%
Female persons, percent	▲ 50.5%

Example 6: Census & GSS

- The percentage of women in the <u>2021 GSS sample 18+</u>
 - . tab female

Cum.	Percent	Freq.	female
44.06 100.00	44.06 55.94	1,736 2,204	0 1
	100.00	3,940	Total

- What causes the difference between 50.5% (population, Census) and 55.94% (sample 18+, GSS)?
- Real difference? Or difference due to random chance?

Example 6: Result

- Population 18+ has a statistically significant higher proportion of women than overall population
 - The difference between the parameter 50.5% and the statistic 55.94% was large and unlikely to have occurred by random chance (p-value<0.05)
- . prtest female=.505

One-sample test of proportion

Number of obs =

3940

Variable	Mean	Std. err.	[95% conf.	interval]
female	.5593909	.0079093	. 543889	. 5748927

p = proportion(female)

z = 6.8285

H0: p = 0.505

Ha: p < 0.505

Pr(Z < z) = 1.0000

Ha: p != 0.505

Pr(|Z| > |z|) = 0.0000

Ha: p > 0.505Pr(Z > z) = 0.0000

