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Outline

Explain the purpose of inferential statistics In
terms of generalizing from a sample to a
population

Define and explain the basic techniques of

random sampling

Explain and define these key terms: population,
sample, parameter, statistic, representative,
EPSEM sampling technigues

Differentiate between the sampling distribution,
the sample, and the population

Explain two theorems m




Basic logic and terminology

Problem

The populations we wish to study are almost
always so large that we are unable to gather
iInformation from every case

Solution

We choose a sample — a carefully chosen
subset of the population — and use information
gathered from the cases in the sample to
generalize to the population

T




Basic logic and terminology

o Statistics are mathematical characteristics of
samples

« Parameters are mathematical characteristics of
populations

« Statistics are used to estimate parameters




Samples

« Must be representative of the population

— Representative: The sample has the same
characteristics as the population

 How can we ensure samples are
representative?

— Samples drawn according to the rule of EPSEM
(equal probability of selection method)

— If every case in the population has the same chance

of being selected, the sample is likely to be
representative

T




A population of 100 people
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EPSEM sampling techniques

1. Simple random sampling

2. Systematic sampling

3. Stratified sampling

4. Cluster sampling




1. Simple random sampling

* To begin, we need
— Alist of the population

 Then, we need a method for selecting cases

from the population, so each case has the same
probability of being selected
— The principle of EPSEM

— A sample selected this way is very likely to be
representative of the population

— Variable in population should have a normal
distribution or n>30 m




Example

You want to know what percent of students at a
large university work during the semester

Draw a sample size (n) of 500 from a list of all
students (N=20,000)

Assume the list is available from the Registrar

How can you draw names, so every student has
the same chance of being selected?
AHM




Example

Each student has a unique, 6 digit ID number
that ranges from 000001 to 999999

Use a table of random numbers or a computer
program to select 500 ID numbers with 6 digits
each

Each time a randomly selected 6 digit number
matches the ID of a student, that student is
selected for the sample

Continue until 500 names are selected

T




Example

e Stata

set obs 500
generate student = runiformint(1l,999999)
sum student
Variable |
_____________ o e
student | 500 482562.6 283480.9 997200

e Excel

— RANDBETWEEN (minimum,maximum)
* Returns a random number between those you specify
* Drag the function to 500 cells
=RANDBETWEEN(1,999999)

— RANDARRAY (rows,columns,minimum, maximum)
=RANDARRAY(500,1,1,999999) m




Example

« Disregard duplicate numbers

 Ignore cases in which no student ID matches the
randomly selected number

« After questioning each of these 500 students,
you find that 368 (74%) work during the

semester




Applying logic and terminology

In the previous example:

Population: All 20,000 students

Sample: 500 students selected and interviewed

Statistic: 74% (percentage of sample that held
a Job during the semester)

Parameter: Percentage of all students in the
population who held a job AM
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Source: Babbie 2001, p.200.




2. Systematic sampling

Useful for large populations

Randomly select the first case then select every
kih case

Sampling interval

— Distance between elements selected in the sample

— Population size (N) divided by sample size (n)
Sampling ratio

— Proportion of selected elements in the population

— Sample size (n) divided by population size (N)

Can be problematic if the list of cases Is not truly
random or demonstrates some patterning m

Source: Babbie 2001, p.197-198.




Example

If a list contained 10,000 elements and we want
a sample of 1,000

Sampling interval
— Population size / sample size = 10,000/ 1,000 = 10

— We would select every 10th element for our sample

Sampling ratio
— Sample size / population size = 1,000/ 10,000 = 1/10
— Proportion of selected elements in population

Select the first element at random

T

Source: Babbie 2001, p.197-198.



3. Stratifled sampling

It guarantees the sample will be representative
on the selected (stratifying) variables
— Stratification variables relate to research interests

First, divide the population list into subsets,
according to some relevant variable

— Homogeneity within subsets
« E.g., only women in a subset; only men in another subset

— Heterogeneity between subsets
* E.g., subset of women is different than subset of men
Second, sample from the subsets

— Select the number of cases from each subset
proportional to the population m




Example

 |If you want a sample of 1,000 students

— That would be representative to the population of
students by sex and GPA

* You need to know the population composition

— E.g., women with a 4.0 average compose 15 percent
of the student population

* Your sample should follow that composition
— In a sample of 1,000 students, you would select 150

women with a 4.0 average

T




Stratified, systematic sample
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4. Cluster sampling

« Select groups (or clusters) of cases rather than
single cases

— Heterogeneity within subsets

* E.g., each subset has both women and men, following same
proportional distribution as population

— Homogeneity between subsets
* E.g., all subsets with both women and men should be similar

* Clusters are often geographically based
— For example, cities or voting districts

« Sampling often proceeds in stages

— Multi-stage cluster sampling
— Less representative than simple random sampling m




Stratified vs. cluster sampling

o Stratified

— Homogeneity within subsets
— Heterogeneity between subsets
— Select cases from each subset

Subset of Subset of
women men

e Cluster
— Heterogeneity within subsets (groups, clusters, areas)
— Homogeneity between subsets
— Select groups (e.g., area 1) rather than single cases

Area 1: Area 2.
women & men women & men m




Sampling distribution

« Sampling distribution is the probabilistic
distribution of a statistic for all possible samples
of a given size (n)

— It is the distribution of a statistic (e.g., proportion,
mean) for all possible outcomes of a certain size

« Central tendency and dispersion
— Mean is the same as the population mean
— Standard deviation is referred as standard error

« It is the population standard deviation divided by the square
root of n

* We have to take into account the complex survey design to
estimate the standard error (svyset command in Stata) m




Linking sample and population

« Every application of inferential statistics involves
three different distributions
— Population: empirical; unknown
— Sampling distribution: theoretical; known
— Sample: empirical; known

 |n inferential statistics, the sample distribution
links the sample with the population

. Sampling
Population |1 yictribution




Example

* Suppose we want to gather information on the
age of a community of 10,000 individuals

— Sample 1: n=100 people, plot sample’s mean of 27
— Replace people in the sample back to the population

— Sample 2: n=100 people, plot sample’s mean of 30
— Replace people in the sample back to the population

Sample 1 Sample 2

S

26 27 28 29 30 31 32 33 34@




Example

* We repeat this procedure: sampling, replacing

— Until we have exhausted every possible combination
of 100 people from the population of 10,000

— Sampling distribution has a normal shape




Another example:
A population of 10 people
with $0—$9
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The sampling distribution (n=1)
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The sampling distribution (n=2)
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True mean = $4.50
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The sampling distribution

True mean = $4.50

A. Samples of 3
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The sampling distribution

True mean = $4.50

C. Samples of 5 ¢
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Properties of sampling distribution

It has a mean (uy) equal to the population mean ()

It has a standard deviation (standard error, o) equal to
the population standard deviation (o) divided by the

sguare root of n
It has a normal distribution

A Sampling Distribution of Sample Means
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Source: Healey 2015, p.152.



First theorem

« Tells us the shape of the sampling distribution
and defines its mean and standard deviation

 If repeated random samples of size n are drawn
from a normal population with mean p and
standard deviation ¢

— Then, the sampling distribution of sample means will
have a normal distribution with...

— Amean: Uz = u
— A standard error of the mean: oz = g/+/n

T




First theorem

« Begin with a characteristic that is normally
distributed across a population (1Q, height)

« Take an infinite number of equally sized random
samples from that population

« The sampling distribution of sample means will
be normal

T




Central limit theorem

 If repeated random samples of size n are drawn
from any population with mean p and standard
deviation o

— Then, as n becomes large, the sampling distribution
of sample means will approach normality with...

— Amean: Uz = u
— A standard error of the mean: oz = g/+/n

« This is true for any variable, even those that are
not normally distributed in the population

— As sample size grows larger, the sampling distribution
of sample means will become normal in shape

T




Central limit theorem

« The importance of the central limit theorem is

that it removes the constraint of normality in the
population

— Applies to large samples (n=100)

 |f the sample is small (n<100)

— We must have information on the normality of the

population before we can assume the sampling
distribution is normal




Additional considerations

The sampling distribution is normal
— We can estimate areas under the curve (Appendix A)
— Orin Stata: display normal (z)

We do not know the value of the population
mean ()

— But the mean of the sampling distribution (ug) Is the
same value as u

We do not know the value of the population
standard deviation (0)

— But the standard deviation of the sampling distribution
(oz) Is equal to o divided by the square root of n
AlM




Symbols

Distribution Shape Mean Standqrd Proportion
deviation

Samples Varies

Populations  Varies

Sampling

distributions NOfmal

of means

of proportions

Source: Healey 2015, p.157.
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