************************************ ************************************ ***SOCI 600: INTRODUCTION TO SOCIOLOGICAL DATA ANALYSIS ***SAMPLE WEIGHTS AND BASIC DESCRIPTIVE STATISTICS ************************************ ************************************ ************************************ ***CLEAR MEMORY ************************************ clear all ************************************ ***CREATE SHORTCUTS AND LOG FILE ************************************ ***Shortcut for folders global codes = "H:\course\codes" global data = "H:\course\data" global output = "H:\course\output" ***Start saving results window log using "$codes\Stata02.log", replace text ************************************ ***OPENING COMMANDS ************************************ ***Tell Stata to not pause for "more" messages set more off ***Open 2021 ACS (only Texas) use "$data\ACS2021.dta", clear ************************************ ***GENERATE VARIABLES ************************************ ***Sex gen female=. replace female=0 if sex==1 // Male replace female=1 if sex==2 // Female label define female 0 "Male" 1 "Female" label values female female ***Race/ethnicity gen raceth=. replace raceth=1 if race==1 & hispan==0 // White replace raceth=2 if race==2 & hispan==0 // Black replace raceth=3 if hispan>=1 & hispan<=4 // Hispanic replace raceth=4 if (race==4 | race==5 | race==6) & hispan==0 // Asian replace raceth=5 if race==3 & hispan==0 // Native American replace raceth=6 if (race==7 | race==8 | race==9) & hispan==0 // Other label define raceth 1 "White" 2 "African American" 3 "Hispanic" /// 4 "Asian" 5 "Native American" 6 "Other races" label values raceth raceth ***Age egen agegr = cut(age), at(0,16,20,25,35,45,55,65,100) label define agecode 0 "0-15" 16 "16-19" 20 "20-24" 25 "25-34" /// 35 "35-44" 45 "45-54" 55 "55-64" 65 "65-100" label values agegr agegr ***Educational attainment gen educgr=. replace educgr=1 if educ>=0 & educ<=5 // Less than high school replace educgr=2 if educ==6 // High school replace educgr=3 if educ==7 | educ==8 // Some college replace educgr=4 if educ==10 // College replace educgr=5 if educ==11 // 5+ years of college, graduate school label define educgr 1 "Less than high school" 2 "High school" /// 3 "Some college" 4 "College" 5 "Graduate school" label values educgr educgr ***Marital status gen marital=. replace marital=1 if marst==1 | marst==2 // Married replace marital=2 if marst>=3 & marst<=5 // Separated, divorced, widowed replace marital=3 if marst==6 // Never married, single label define marital 1 "Married" 2 "Separated, divorced, widowed" 3 "Never married" label values marital marital ***Migration status gen migrant=. replace migrant=1 if migrate1d==10 | migrate1d==23 // same house or within PUMA replace migrant=2 if migrate1d>=24 & migrate1d<=32 // internal migrant replace migrant=3 if migrate1d==40 // international migrant label define migrant 1 "Non-migrant" 2 "Internal migrant" 3 "International migrant" label values migrant migrant ***Wage and salary income gen income=. replace income=incwage if incwage!=999999 ************************************ ***WEIGHT VARIABLES ************************************ ***Person weight sum perwt, d // summary statistics hist perwt, ylabel(0(10)40) percent // histogram ***Household weight sum hhwt if pernum==1, d // summary statistics hist hhwt if pernum==1, ylabel(0(10)40) percent // histogram ************************************ ***USING PERSON WEIGHT - SEX ************************************ ***No weight tab sex ***Fweight expands to population size tab sex [fweight=perwt], m ***Iweight expands to population size tab sex [iweight=perwt], m ***Aweight maintains sample size tab sex [aweight=perwt], m ************************************ ***USING HOUSEHOLD WEIGHT - HOME OWNERSHIP ************************************ ***No weight tab ownershp if pernum==1 ***Fweight expands to population size tab ownershp if pernum==1 [fweight=perwt], m ***Iweight expands to population size tab ownershp if pernum==1 [iweight=perwt], m ***Aweight maintains sample size tab ownershp if pernum==1 [aweight=perwt], m ************************************ ***COMPLEX SAMPLE DESIGN ************************************ ***singleunit(scaled) ***The scaling factor comes from using ***the average of the variances from the strata with multiple sampling units ***for each stratum with one sampling unit svyset cluster [pweight=perwt], strata(strata) singleunit(scaled) ************************************ ***INCOME: mean, standard error, and confidence interval ************************************ ***No weight mean income ***Fweight expands to population size ***Standard error is artificially low ***Due to high number of observations mean income [fweight=perwt] ***Iweight expands to population size ***Standard error is artificially low ***Due to high number of observations mean income [iweight=perwt] ***Aweight maintains sample size ***Still underestimates standard error mean income [aweight=perwt] ***Pweight maintains sample size ***Still underestimates standard error mean income [pweight=perwt] ***Complex sample design svy: mean income ***Estimate standard deviation from previous command estat sd ************************************ ***COMPLEX SAMPLE DESIGN FOR SUBPOPULATIONS ************************************ ***If we consider that missing cases are part of the population, ***we need to inform that subpopulation is only non-missing cases. ***Then, full sample design is taken into account. svy, subpop(if income!=.): mean income estat sd ***Survey design for people with 15-64 years of age svy, subpop(if age>=15 & age<=64): mean income ***If we consider that missing cases are part of the population, ***we need to inform that subpopulation is only non-missing cases. ***Then, full sample design is taken into account. svy, subpop(if age>=15 & age<=64 & income!=.): mean income ************************************ ***SEX ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab sex [fweight=perwt] ***Number of valid cases count if sex!=. ***Number of missing cases count if sex==. ************************************ ***RACE/ETHNICITY ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab raceth [fweight=perwt] ***Number of valid cases count if raceth!=. ***Number of missing cases count if raceth==. ************************************ ***AGE ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab agegr [fweight=perwt] ***Number of valid cases count if agegr!=. ***Number of missing cases count if agegr==. ************************************ ***EDUCATIONAL ATTAINMENT ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab educgr [fweight=perwt] ***Number of valid cases count if educgr!=. ***Number of missing cases count if educgr==. ************************************ ***MARITAL STATUS ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab marital [fweight=perwt] ***Number of valid cases count if marital!=. ***Number of missing cases count if marital==. ************************************ ***MIGRANT STATUS ************************************ ***It doesn't need complex sample design, ***because we are not calculating standard errors tab migrant [fweight=perwt] ***Number of valid cases count if migrant!=. ***Number of missing cases count if migrant==. ************************************ ***WAGE AND SALARY INCOME ***Focus on those with some income ***(exclude those with zero income) ************************************ ***Income: Minimum, p25, median, p75, maximum, IQR, mean, standard deviation tabstat income [fweight=perwt] if income!=0, stat(min p25 p50 p75 max iqr mean sd) ***Complex survey design ***Total svy, subpop(if income!=. & income!=0): mean income estat sd ***Men svy, subpop(if income!=. & income!=0 & female==0): mean income estat sd ***Women svy, subpop(if income!=. & income!=0 & female==1): mean income estat sd ***Population size with valid information on income tab sex [fweight=perwt] if income!=. & income!=0 ***Sample size with valid information on income count if income!=. & income!=0 ***Number of missing cases or zero income count if income==. | income==0 ***Histogram of income hist income [fweight=perwt] if income!=0, freq normal hist income [fweight=perwt] if income!=0, percent normal ************************************ ***PIE GRAPH - RACE/ETHNICITY ************************************ ***No label graph pie [fweight=perwt], over(raceth) ***Explode all slices graph pie [fweight=perwt], over(raceth) pie(_all, explode) ***Include label graph pie [fweight=perwt], over(raceth) plabel(_all percent) ***Include label and explode all slices graph pie [fweight=perwt], over(raceth) plabel(_all percent) pie(_all, explode) ***Save graph graph export "$output\race-ethnicity_pie.png", replace ************************************ ***COLUMN GRAPH - RACE/ETHNICITY ************************************ ***No label graph bar [fweight=perwt], over(raceth, label(angle(45))) ytitle("Percent") ***Include label graph bar [fweight=perwt], over(raceth, label(angle(45))) blabel(bar, position(outside) format(%9.2f) size(medlarge)) ytitle("Percent") ***Include label and descending order graph bar [fweight=perwt], over(raceth, label(angle(45)) sort(1) descending) blabel(bar, position(outside) format(%9.2f) size(medlarge)) ytitle("Percent") ***Save graph graph export "$output\race-ethnicity_column.png", replace ************************************ ***HISTOGRAMS - AGE ************************************ ***Histogram of age hist age [fweight=perwt], percent discrete xlabel(0(10)100) xtitle("Age") ***Save graph graph export "$output\age_histogram.png", replace ***Histogram of age by sex hist age [fweight=perwt], percent discrete by(female) xlabel(0(10)100) xtitle("Age") ***Overlaying histograms of age by sex twoway (histogram age if female==0 [fweight=perwt], frequency discrete xlabel(0(10)100) fcolor(gs11) lcolor(gs11)) /// (histogram age if female==1 [fweight=perwt], frequency discrete xlabel(0(10)100) fcolor(none) lcolor(black) /// legend(order(1 "Males" 2 "Females")) /// xtitle("Age")) ***Save graph graph export "$output\age-sex_histogram.png", replace ************************************ ***BOXPLOT - INCOME ************************************ ***Vertical boxplot of income graph box income if income!=0 [fweight=perwt], ytitle(Wage and salary income) ***Horizontal boxplot of income graph hbox income if income!=0 [fweight=perwt], ytitle(Wage and salary income) ***Save graph graph export "$output\income_boxplot.png", replace ************************************ ***SCATTER PLOT - INCOME VERSUS AGE ***Weights don't work well with scatter plots (change size of dots) ************************************ ***Scatter plot of age by income scatter income age twoway (scatter income age) (lfit income age) ***Save graph graph export "$output\age-income_scatter.png", replace ************************************ ***BAR GRAPH - AGE-SEX STRUCTURE ************************************ ***Generate five-year age groups variable - automatically egen age5y = cut(age), at(0,5,10,15,20,25,30,35,40,45,50,55,60,65,70,75,80,85,100) table age5y, stat(min age) stat(max age) stat(count age) ***Generate male variable (opposite of female variable) gen male=!female tab male female, m nolabel ***Generate variables with male and female totals by five-year age groups sort age5y by age5y: egen maletotal=total(male) by age5y: egen femaletotal=total(female) ***Replace male total by negative value replace maletotal=-maletotal ***Age-sex structure twoway bar maletotal age5y [fweight=perwt], horizontal barwidth(5) fcolor(navy) lcolor(black) lwidth(medium) || /// bar femaletotal age5y [fweight=perwt], horizontal barwidth(5) fcolor(maroon) lcolor(black) lwidth(medium) /// legend(label(1 Males) label(2 Females)) /// ytitle("Age group") /// ylabel(0(5)85, angle(horizontal) valuelabel labsize(*.8)) /// xtitle("Population size") /// xlabel(-10000 "10000" -5000 "5000" 0 5000 10000) /// title("Age-sex structure, Texas") /// subtitle("2021 American Community Survey") ***Save graph graph export "$output\age-sex_bar.png", replace ************************************ ***CLOSING COMMANDS ************************************ ***Save data save "$data\Stata02.dta", replace ***Save log log close