************************************ ************************************ ***SOCI 600: INTRODUCTION TO SOCIOLOGICAL DATA ANALYSIS ***BIVARIATE ASSOCIATIONS FOR NOMINAL-, ORDINAL-, AND INTERVAL-RATIO-LEVEL VARIABLES ************************************ ************************************ ************************************ ***CLEAR MEMORY ************************************ clear all ************************************ ***CREATE SHORTCUTS AND LOG FILE ************************************ ***Shortcut for folders global codes = "H:\course\codes" global data = "H:\course\data" global output = "H:\course\output" ***Start saving results window log using "$codes\Stata06c-d.log", replace text ************************************ ***OPENING COMMANDS ************************************ ***Tell Stata to not pause for "more" messages set more off ***Open 2021 ACS (only Texas) use "$data\ACS2021.dta", clear ***Complex survey design svyset cluster [pweight=perwt], strata(strata) singleunit(scaled) ************************************ ***GENERATE VARIABLES ************************************ ***Sex gen female=. replace female=0 if sex==1 // Male replace female=1 if sex==2 // Female label define female 0 "Male" 1 "Female" label values female female ***Race/ethnicity gen raceth=. replace raceth=1 if race==1 & hispan==0 // White replace raceth=2 if race==2 & hispan==0 // Black replace raceth=3 if hispan>=1 & hispan<=4 // Hispanic replace raceth=4 if (race==4 | race==5 | race==6) & hispan==0 // Asian replace raceth=5 if race==3 & hispan==0 // Native American replace raceth=6 if (race==7 | race==8 | race==9) & hispan==0 // Other label define raceth 1 "White" 2 "African American" 3 "Hispanic" /// 4 "Asian" 5 "Native American" 6 "Other races" label values raceth raceth ***Age egen agegr = cut(age), at(0,16,20,25,35,45,55,65,100) label define agecode 0 "0-15" 16 "16-19" 20 "20-24" 25 "25-34" /// 35 "35-44" 45 "45-54" 55 "55-64" 65 "65-100" label values agegr agegr ***Educational attainment gen educgr=. replace educgr=1 if educ>=0 & educ<=5 // Less than high school replace educgr=2 if educ==6 // High school replace educgr=3 if educ==7 | educ==8 // Some college replace educgr=4 if educ==10 // College replace educgr=5 if educ==11 // 5+ years of college, graduate school label define educgr 1 "Less than high school" 2 "High school" /// 3 "Some college" 4 "College" 5 "Graduate school" label values educgr educgr ***Marital status gen marital=. replace marital=1 if marst==1 | marst==2 // Married replace marital=2 if marst>=3 & marst<=5 // Separated, divorced, widowed replace marital=3 if marst==6 // Never married, single label define marital 1 "Married" 2 "Separated, divorced, widowed" 3 "Never married" label values marital marital ***Migration status gen migrant=. replace migrant=1 if migrate1d==10 | migrate1d==23 // same house or within PUMA replace migrant=2 if migrate1d>=24 & migrate1d<=32 // internal migrant replace migrant=3 if migrate1d==40 // international migrant label define migrant 1 "Non-migrant" 2 "Internal migrant" 3 "International migrant" label values migrant migrant ***Internal migration status (domestic migration) gen dommig=. replace dommig=0 if migrant==1 // non-migrant replace dommig=1 if migrant==2 // internal migrant label define dommig 0 "Non-migrant" 1 "Internal migrant" label values dommig dommig tab migrant dommig, m ***International migration status gen intmig=. replace intmig=0 if migrant==1 // non-migrant replace intmig=1 if migrant==3 // international migrant label define intmig 0 "Non-migrant" 1 "International migrant" label values intmig intmig tab migrant intmig, m ***Wage and salary income gen income=. replace income=incwage if incwage!=999999 ************************************ ***ASSOCIATIONS BETWEEN NOMINAL-LEVEL VARIABLES ************************************ ************************************ ***PHI - Internal migration by sex ************************************ ***Remember to report column percentages ***taking into account survey weights tab dommig female [fweight=perwt], col nofreq // column percentages tab dommig female [fweight=perwt] // population size tab dommig female // sample size tab dommig female, m // missing cases ***Phi correlation coefficient *Phi is designed to measure the degree *of relation for two binary variables *(i.e., dichotomous variables, dummy variables) *To compute Phi, first convert the binary variables into 1's and 0's, *and estimate the Pearson'r correlation corr dommig female // in this case, Pearson's r correlation same as Phi pwcorr dommig female // same as above pwcorr dommig female, sig // Phi with test of significance ************************************ ***CHI SQUARE, LAMBDA, CRAMER'S V - Migration status by race/ethnicity ************************************ ***Remember to report column percentages ***taking into account survey weights tab migrant raceth [fweight=perwt], col nofreq // column percentages tab migrant raceth [fweight=perwt] // population size tab migrant raceth // sample size tab migrant raceth, m // missing cases ***Chi square tab migrant raceth, chi // weights not allowed svy: tab migrant raceth // chi square test with complex survey design (correct form) ***Cramer's V tab migrant raceth, V // weights not allowed ***Chi square, Cramer's V tab migrant raceth, chi V // weights not allowed ***Lambda *If your Stata doesn't have the lambda command, *type "ssc install lambda" to install it. *ssc install lambda *Note: When row totals are very unequal, *Lambda can be zero even when there is an association between the variables. *For very unequal row marginals, it's better to use *a Chi Square based measure of association. lambda migrant raceth [aweight=perwt] ************************************ ***ASSOCIATIONS BETWEEN ORDINAL-LEVEL VARIABLES ************************************ ************************************ ***GAMMA - Education group by age group ************************************ ***Remember to report column percentages ***taking into account survey weights tab educgr agegr [fweight=perwt], col nofreq // column percentages tab educgr agegr [fweight=perwt] // population size tab educgr agegr // sample size tab educgr agegr, m // missing cases ***Gamma measures the strength and pattern/direction of the association tab educgr agegr, gamma // weights not allowed ***Test statistic: Z = gamma / ASE ***ASE: Asymptotic Standard Error di 0.4384/0.002 // test statistic ***p-value ***"normal" command calculates area under the curve below the Z-score ***If Z is positive, p-value (one-tailed test): di 1-normal(Z) ***If Z is negative, p-value (one-tailed test): di normal(Z) di 1-normal(219.2) // p-value ************************************ ***SPEARMAN'S RHO - Groups of years of schooling by age group ************************************ ***Frequency distributions tab educgr, m tab agegr, m ***Total number of cases count if educgr!=. & agegr!=. ***Sample size tab educgr agegr ***Column percentage tab educgr agegr [fweight=perwt], col nofreq ***Population size tab educgr agegr [fweight=perwt] ***Spearman's rho (rank correlation coefficient) spearman educgr agegr // weights not allowed ***Spearman's rho squared di 0.4646 * 0.4646 di 0.4646^2 ************************************ ***ASSOCIATIONS BETWEEN INTERVAL-RATIO-LEVEL VARIABLES ************************************ ************************************ ***SCATTERPLOT - Income by age ************************************ ***Scatterplot without regression line twoway scatter income age ***Scatterplot with regression line twoway scatter income age || lfit income age if income!=0, /// ytitle(Wage and salary income) xtitle(Age) twoway (scatter income age) (lfit income age) if income!=0, /// ytitle(Wage and salary income) xtitle(Age) ***Save graph graph export "$output\age-income_scatter.png", replace ***Regression coefficients ***Least-squares regression model ***They can be reported in the footnote of the scatterplot ***Income = F(Age) svy, subpop(if income!=. & income!=0): reg income age ************************************ ***LINE GRAPH - Mean income by age ************************************ ***Generate variable with mean income by age bysort age: egen mincage=mean(income) if income!=0 sum mincage, d ***Line graph of income by age twoway line mincage age [fweight=perwt], /// ytitle("Mean wage and salary income") ylabel(0(20000)80000) ***Save graph graph export "$output\age-income_line.png", replace ***Regression coefficients ***Least-squares regression model ***They can be reported in the footnote of the scatterplot ***Generate age squared gen agesq=age * age ***Income = F(Age, Age squared) svy, subpop(if income!=. & income!=0): reg income age agesq ************************************ ***TABLE - Mean income by age group ************************************ ***Use "aweight" to get sample size by age group tabstat income [aweight=perwt] if income!=0, by(agegr) stat(mean sd n) ***Regression coefficients ***Reference category: 45-54 ***Income = F(Age groups) svy, subpop(if income!=. & income!=0): reg income ib45.agegr ************************************ ***PEARSON'S r ************************************ ***It would be incorrect to use fweight, ***because you would get statistical significance ***by indicating to the test that you have ***more observations than what was actually collected ***"aweight" preserves sample size and ***it is allowed in Stata to estimate Pearson's r ***Wage and salary income, age corr income age if income!=0 [aweight=perwt] pwcorr income age if income!=0 [aweight=perwt] // same as above pwcorr income age if income!=0 [aweight=perwt], sig // with significance test ***Coefficient of determination (r-squared) di .2109^2 ************************************ ***Correlation matrix ************************************ ***Note: educational attainment variable is ordinal, not interval-ratio ***Total number of cases count if income!=0 & income!=. & age!=. & educ!=. ***Wage and salary income, age, education pwcorr income age educ if income!=0 [aweight=perwt], sig ***Coefficient of determination (r-squared) ***Income and age di .2109^2 ***Coefficient of determination (r-squared) ***Income and education di .3373^2 ************************************ ***CLOSING COMMANDS ************************************ ***Save data save "$data\Stata06c-d.dta", replace ***Save log log close