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• Balancing equation

• Growth rate R

• Exponential function and curve

• Doubling times
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Exponential growth



Balancing equation

• Balancing equation for the world, 2010–2011

K(2011) = K(2010) + B(2010) – D(2010)

– K(2010): world population at start of 2010

– B(2010): births during 2010

– D(2010): deaths during 2010

– K(2011): population at start of 2011
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World population 2010 to 2011

Population 1 January 2010 6,851 million

+ Births 2010 +140 million

+ Deaths 2010 –57 million

= Population 1 January 2011 6,934 million

Source: 2010 Population Data Sheet of the Population Reference Bureau (PRB). Wachter 2014, p. 6.
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General form of balancing equation

• For closed population

K(t + n)= K(t) + B(t) – D(t)

– n: length of a period, e.g. 1 year or 10 years

– B(t), D(t): births, deaths during period from t to t+n

• Equation for national or regional populations are 

more complicated due to migration

– Closed population examples are used to understand 

concepts
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Pattern when combining equations

• Decompose next year’s “stock” into this year’s 

“stock” plus “flow”

K(1)= K(0) + [B(0) – D(0)]

• t=0 for present year, n=1 year long
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Separate elements

• Multiply and divide by starting population K(0)

• Following year

• Substituting for K(1)
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• We go from a starting population to a later 

population by using multiplication

– B/K and D/K are less dependent on K than B and D

– Population growth appears as a multiplicative process

• Multiplicative growth ≈ geometric growth

– Geometric growth applies for growth through whole 

time intervals

• Geometric growth = exponential growth

– When fractions of intervals are involved, we use 

exponential function
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From starting to later population



Simple case

• When B/K and D/K are not changing or not changing 

much

• Equations take the form

K(1) = A K(0)

K(2) = A2 K(0)

...

K(T) = AT K(0)
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Example

• In 2000, there were 6.048 billion people, with 

births exceeding deaths by about 75 million/year

K(0) = 1.01240 * 6.048 = 6.048

K(1) = 1.01241 * 6.048 = 6.123

K(10) = 1.012410 * 6.048 = 6.841

K(12) = 1.012412 * 6.048 = 7.012
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Growth rate R

• Balancing equation for closed population led to 
equation for population growth

K(T) = AT K(0)

• B(t)/K(t) and D(t)/K(t) are not changing much

• When births exceed deaths, A is bigger than 1 and 
population increases

• Keeping same value of A through time, we get...
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K(t) with ever-changing slope

Source: Wachter 2014, p. 10.
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Constant slope

• Previous graph, we cannot measure growth rate 

by graph slope, because it varies

– Slope changes even when B/K and D/K are fixed

• We need a measure of growth that stays fixed 

when B/K and D/K are fixed

– Take logarithms of K(t)

– Usual way of converting multiplication into addition

– log K(t) versus t has constant slope...
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Log K(t) with constant slope
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Source: Wachter 2014, p. 10.



Linear equation

• Taking logarithms converts the equation

K(t) = At K(0)

• Into the equation

log(K(t)) = log(K(0)) + log(A)t

• General form of linear equation

log(K(T)) = Y = a +bX

• Slope b is log(A), which is called slope R

– Measure of population growth
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Natural logarithms

• We use natural logarithms, which have base 

e=2.71828

– “e” is the choice for A that makes the slope of the 

graph of K(t) equal 1 when t=0 and K(0)=1

• Population growth rate R

– Slope of the graph of the logarithm of population size 

over time

– Proportional rate of change in population size
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Population growth rate (R)
• Growth is unchanging when the ratios of births and 

deaths to population size are unchanging

• The slope equals the ratio of change in vertical axis 

(rise) to horizontal axis (run)

• It can also be written as
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Average growth rate
• As slope of logarithm of population size

• As proportional rate of change in population size

– When T (interval in years) is close to zero

– First factor is ratio of vertical to horizontal axis

– Divide it by K(0) to get slope as proportion of size
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• n: length of a period, e.g. 1 year or 10 years

• K(t): population at the beginning of the interval

• K(t+n): population at the end of the interval
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Summarizing growth rate



• n: length of a period, e.g. 1 year or 10 years

• K(0): population at the beginning of the interval

• K(t): population at the end of the interval
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Example of growth rate R

• R = log[K(t+n)/K(t)] / n = log(6,934/6,851) / 1 = 0.012042

• R = log(1+(B–D)/K) = log(1+(140–57)/6,851) = 0.012042

• World population grew at a rate of about 12 per thousand per 
year between 2010 and 2011

Population 1 January 2010 6,851 million

+ Births 2010 +140 million

+ Deaths 2010 –57 million

= Population 1 January 2011 6,934 million
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• Population over time when ratios of births and 
deaths to population remain constant

K(t) = At K(0) = eRt K(0) = exp(Rt)K(0)

• Exponential function is the inverse function for 

natural logarithms

elog(x) = exp(log(x)) = x

log(ey) = log(exp(y)) = y
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Exponential function



Exponential curve

• We know that log(A) is R

A = elog(A) = eR

At = (eR)t = eRt = exp(Rt)

• Exponential curve

– It is the graph of exp(Rt) as a function of t

– Continuous-time version of the curve for geometric 

growth
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Trajectories of exponential growth

Source: Wachter 2014, p. 15.
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Applying exponential function

• On the logarithm scale, our formula for growth at 

each step involves simple addition

log K(t+n) = log K(t) + Rn

• We convert back to counts by applying the 

exponential function, which brings us back to 

multiplication

K(t+n) = K(t) exp(Rn)

K(t+n) = K(t) eRn
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Rise and run

China’s log-population

Source: Wachter 2014, p. 15.
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Growth rates in China

Input

log K(1960) = 20.2935
Results

Date
n

“run”
R

Rn

“rise”
log(K) K(t)

1960 10 0.0232 0.2320 20.2935 650,661,438

1970 15 0.0170 0.2550 20.5255 820,561,976

1985 15 0.0117 0.1755 20.7805 1,058,903,738

2000 12 0.0052 0.0624 20.9560 1,262,045,936

Source: Census Bureau IDB (2012). Wachter 2014, p. 16.

log K(t+n) = log K(t) + Rn

K(t+n) = K(t) eRn = exp(log(K))
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Doubling times
• Doubling time: time it would take a population to 

double at a given growth rate if the exponential 

model were exactly true (rule of 69.3)

K(t) = exp(Rt) K(0)

K(Tdouble) = 2K(0) = exp(RTdouble) K(0)

2 = exp(RTdouble)

log(2) = RTdouble

Tdouble = log(2) / R ≈ 0.6931 / R

• Halving time: if growth rate is negative, we would 

get how many years population would decrease 

by half
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World population and doubling times

Date Population
Growth rate

(R)

Doubling time

≈ (0.6931 / R)

8000 B.C. 5 million 0.000489 1417 years

1 A.D. 250 million –0.000373 –1858 years

600 200 million 0.000558 1272 years

1000 250 million 0.001465 473 years

1750 750 million 0.004426 157 years

1815 1,000 million 0.006957 100 years

1950 2,558 million 0.018753 37 years

1975 4,088 million 0.015937 43 years

2000 6,089 million

Source: Estimates drawn from Cohen (1995) and IDB (2012). Wachter 2014, p. 25.
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