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Estimating Multistate Transition Hazards From

Carl P. SCHMERTMANN

Last-Move Data

Following United Nations recommendations, many countries collect or publish internal migration data in last-move form, despite
continuing uncertainty among researchers about how to estimate transition rates and probabilities from such information. “Last-
move” data are a form of retrospective event history in which the only available information for each observational unit are the
state at the time of a survey (w), the last previous state (¢), and the time at which the ¢ — w transition occurred. The statistical
literature has addressed special cases, but there is still no general method for estimating transition hazards from last-move data.
In this article I propose such a method, analyze its performance in a Monte Carlo simulation study, and apply it to migration data

from Brazil’s 1980 census.

KEY WORDS: Backward recurrence times; Censored data; Migration; Multistate demography; Open intervals; Survival analysis.

1. INTRODUCTION

1.1

Information on migration within the United States comes
primarily from the decennial census, which records each
individual’s place of residence on the census date and place
of residence 5 years earlier. Cross-tabulating responses to
these two questions provides a partial picture of internal
migration flows for the second half of each decade.

This type of data, which summarizes possibly complex
event histories by noting individuals’ states at the start and
end of a fixed time period, may be called “N-year-ago”
data. Virtually all statistical methods for migration analysis
and migration accounting systems require N-year-ago data
as input (Courgeau 1988; Rees 1985; Rogers 1975).

Despite their prevalence, N-year-ago migration data have
well-known deficiencies. Most notably, they leave gaps in
the data record if surveys are taken more than N years apart,
they record at most one transition per respondent over the
period of interest, and they may obscure the actual origins
and destinations of individual moves. (As a combined ex-
ample of the latter two problems, note that an N-year-ago
data set would report a single “A to C” transition for an
individual who made both an A — B move and a B — C
move over N years.)

Partly in response to these deficiencies, many countries
use an alternative method of reporting internal migration
data, the “last-move” method. Last-move data report the
origins, destinations, and times of the last move made by in-
dividuals in the population (for example, respondent A last
moved 1 year ago, from California to Oregon; respondent B
last moved 8 years ago, from Idaho to Montana; and so on).
They do not record individuals’ locations at some common,
fixed point in the past. Some countries for which migration
data come from national population registries also publish
migration information in last-move form.

In a comprehensive survey on national migration statis-
tics (now rather old, but unfortunately the last of its kind),
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the United Nations (UN) found that 71 of 121 reporting
countries collected last-move data; for 19 of these countries,
last-move data were the only statistics available on inter-
nal migration (United Nations 1978, Annex III). The same
UN survey reported that 40 national censuses included last-
move questions, with 13 (including those of India, Indone-
sia, Bangladesh, and Brazil) asking last-move questions ex-
clusively. UN recommendations for the 1980s round of na-
tional censuses (United Nations 1980) approved last-move
questions as an acceptable alternative to N-year-ago ques-
tions. In a contemporary example, the Demographic and
Health Surveys (DHS), a set of more than 80 international
population surveys, currently among the most widely-used
data sets in demography, collect and report migration data
exclusively in last-move form.

In practice, last-move data have proven extremely awk-
ward. Unlike the N-year-ago questions, they do not map
neatly into the discrete-time transition probability matri-
ces of multistate demographic accounting systems (Rogers
1975). Because they record only a subset of the state tran-
sitions and periods of exposure that occur over a period of
interest, they cannot be used for calculating event/exposure
ratios in continuous-time hazard models.

Estimating transition hazards and probabilities from last-
move data is more than a good statistical puzzle—it is also
a vexing, unsolved problem for demographers who study
migration. Researchers remain uncertain about how to use
last-move data properly.

1.2 Statistical Background

Last-move data are not unique to migration. Many sur-
veys, censuses, and demographic registration systems col-
lect or publish data on the most recent event experienced by
a respondent. For example, health surveys in poor countries
frequently include questions on women’s current parity and
time since last birth, and there is much literature on how to
construct meaningful fertility indices from such data (see,
e.g., Feeney and Ross 1984; Sheps, Menken, Ridley, and
Lingner 1970; Srinivasan 1968). Marketing questionnaires
may ask when the respondent last purchased a specified
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item or brand (Wheat and Morrison 1994). An epidemio-
logical survey may sample those with a particular disease
and ask how long they have been infected (Keiding 1991).

From the standpoint of survival models, last-event data
are somewhat unusual. Each observed spell begins with an
event and ends when interrupted by the survey. By construc-
tion, no events occur during the sampled spells. Despite
this peculiar censoring process, several researchers (Alli-
son 1985; Baydar and White 1988; Sorensen 1977) have
demonstrated that standard approaches for estimating haz-
ard rates need only slight modification to work with last-
event data in many types of survival models. Allison (1985)
and Hamerle (1991) have provided excellent overviews of
relevant statistical issues.

The problem of estimating hazard rates from last-event
data is not completely solved, however. In particular, there
currently is no general technique for estimating rates from
last-event data in multistate survival models, which are the
primary mathematical tool for demographers studying mi-
gration.

Some migration researchers (e.g., Courgeau 1988, p. 283)
have concluded that the statistical difficulties posed by last-
move migration data are insuperable, or that in any case
they outweigh potential advantages of such data. My aim
in this article is to demonstrate that last-move data can in
fact be used to consistently estimate transition hazards in a
multistate Markov model. Instantaneous rate estimates may
then be converted into discrete-time transition probabili-
ties for use in multistate accounting systems. I propose a
fairly simple approach based on modeling the “visibility”
of transitions and backprojecting the survey population to
estimate exposure, study the new estimator’s properties us-
ing Monte Carlo simulation, and construct an example from
1980 Brazilian census data as an illustration.

2. NOTATION

Let us first establish a system of notation for last-move
data. A survey is taken at time 7. The period of interest
consists of the T' years prior to the survey, from time O to
T. At each moment during [0, T, each of the N individuals
surveyed was in exactly one of R possible states. The survey
collects information on the last change of state, if any, made
by each individual during [0, T']. The survey records

1), the origin state of the last move prior to the survey,

w, the destination state of the last move (this is also the
individual’s state at time T),
and

u, the elapsed time between the last move and the survey
date T.

The elapsed time w is the backward recurrence time dis-
cussed by Allison (1985). Individuals with no moves during
[0,T] are left-censored; by convention, they are assigned
u =T and ¥ = w. (A separate dummy variable to indicate
censoring is unnecessary; any observation with 1) = w must
be censored.) Like the migration data discussed earlier, this
survey does not record an individual’s state at time ¢ = 0,
denoted by «. This initial state « is known for individuals
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who made no moves (if 9 = w, then o = w), but not for
others. If an individual made only one move during [0, T,
then o = 1; however, because the number of moves is not
recorded, the researcher observes o with certainty only for
the censored observations.

For each pair of states (i, j), call V;; the total number of
observations for which ¢ = ¢ and w = j. V stands for “vis-
ible” moves. Of course, many “invisible” moves may have
occurred during [0, 7] that are not recorded in the survey,
because they were not last moves. For i # j, let V;(u)du
denote the number of visible ¢ — j moves with elapsed
times in the interval [u, u + du), let H;;(u) denote the prob-
ability distribution function of backward recurrence times
among those visible ¢ — j moves, and let h;;(u) denote the
corresponding probability density functions. A denotes the
entire set of last-move data {1, wk, Uk fr=1...N-

3. A SIMPLE MODEL

Assume that during [0,7] the column vector of state-
specific populations N(¢) = [N1(¢)... Ng(¢)] evolves ac-
cording to a continuous-time, first-order. Markov process
with a constant R x R hazard matrix u. For a given initial
population N(0),

E[N(t)] = P(t)N(0) (1)

and

1P = uP(0) @
where the element in the ith column and jth row of
P(t), P;;(t), represents the probability that an individual
in state ¢ at time O will be in state j at time ¢. The cor-
responding element of the hazard matrix g represents the
instantaneous hazard of an ¢ — j movement. Following
the standard in multistate demography (Rogers 1975), this
notation reverses the usual (row, column) order of matrix
subscripts to preserve the intuitive interpretation of f;; as
the ¢ — j transition hazard. Diagonal elements of yp are
defined so that each column sums t0 0, pj; = — 34 4 Hjk-

It is important to understand what the Markov model
implies for the densities V;;(u). Moves from ¢ — j are
recorded in the survey only if the individual makes no sub-
sequent transitions. Thus the expected density of visible
1 — 7 moves at any particular value of u is

i F g (3)

where N;(T' — u) represents the number of individuals at
risk of an ¢ — j transition u periods before the survey and
Sj(u) = exp(—u - py;) = exp(—u ., Hjk) Tepresents the
probability of surviving in state j for u periods without a
move. The expected total number of individuals with visible
1 — j moves in the survey will be

Vig(u) = pig Ni(T — u)S;(u),

T
Vi = i /0 NAT —wS;(w)du,  i4j. (4

The expected value of V;; thus depends positively on the
hazard rate for ¢« — j moves, negatively on the hazards
of moves from j to anywhere else, and positively on the
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(changing and unobserved) population of state i during the
[0, T period.

4. ESTIMATION PROBLEM

The problem is to estimate the transition hazards g from
the last-move data A. Standard methods based on tabula-
tions of o and w (see, e.g., Courgeau 1988; Rees 1986;
Rogers 1975; Singer and Spilerman 1976) will not work,
because they require knowledge of the initial state o for
each observation. The same problem applies to maximum
likelihood approaches that use the conditional likelihood
functions L (v, w, u|c). Event/exposure ratios will not work
because, curiously, at the individual level the data contain
only events with no corresponding exposure (1) — w moves,
with no information about time spent in ¢ prior to the move)
and exposure with no corresponding events (the time spent
during (T —u, T, during which there must, be construction,
be no moves away from w).

Stated plainly, it is difficult to estimate transition rates
from last-move data, because events and relevant periods
of exposure may have been rendered “invisible” by moves
later in the period. This problem is evident in (3) and (4),
where the populations at risk, N;(T — u), are unknown. In
general, N;(T —u) depends on every element of u, via (1),
and on the unknown initial population N(0). The researcher
can observe only the end of period values N;(T') = ;(V;;);
any earlier populations must estimated in some manner.

One way around the problem of unknown exposure is to
assume that the period length 7 is very large relative to
the hazard rates. For example, Allison (1985, pp. 320-321)
demonstrated that for a special case (R = 2,7 — o), one
can consistently estimate ¢ from A. Specifically, he showed
that pi;2 can be estimated as the inverse of the sample mean
of u for those who last made a 2 — 1 move, and puo; can be
estimated as the inverse of the sample mean of u for those
who last made a 1 — 2 move.

Allison’s results highlight the manner in which backward
recurrence time distributions h;;(u) change as T' — oco. As
T increases, the population N(7") converges to a constant
vector N* that is proportional to the eigenvector associated
with the zero eigenvalue of u (simplifying the distribution
of individuals across states), and the proportion of the popu-
lation experiencing at least one event in [0, T rises to unity
(simplifying the distribution of spell lengths u). As T' — oo,
(3) simplifies to

Vig(u) = [ N71S5(w) = [pag N exp(u - pj). (5)

Because the terms in square brackets do not vary with wu,
(4) similarly converges to

Vij = —pig N [pgg, i F 7 (6)

and, among individuals with ¢ — 5 last rhoves, the distribu-
tion of v simplifies to the exponential,

hij(u) = —pjjexp(u - pyj),  u >0, (7
with mean

Eiy(u) = -3 Vi 8)
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Thus, regardless of the number of states R, as T' — oo,
one can use simple method-of-moments estimators for the
diagonal elements of the hazard matrix. Specifically,

figs = =5, )
where @; is the sample mean of v for all individuals in state
j at time T In Allison’s example (R = 2), the diagonals

identify p completely, but for R > 2, additional information
is needed.

5. ESTIMATION STRATEGIES

In this section I discuss three alternative methods for
estimating hazards from last-move data and briefly com-
pare their performance in a Monte Carlo simulation. The
first method is a straightforward generalization of Allison’s
(1985) large-T' estimator, the second method is a simple
ad hoc procedure suggested in the demographic literature
on migration, and the third method—based on modeling
the visibility of moves and backprojecting from the end-of-
period population to estimate exposure—is new.

5.1 Asymptotic Estimator (A)

The asymptotic approach suggested by Allison (1985) in
his analysis of backward recurrence times can be general-
ized using some of the results from the previous section.
Specifically, by combining (6) and (9), one can derive esti-
mators for the off-diagonal elements of the hazard matrix
that are consistent in the limit as 7' — oo:

fiij = Vij/la; - No(T)], i .

This A estimator may work well in two rather different
situations; when T is very large relative to the rates in p or
(more surprisingly) when 7" is very small.

For large T, the asymptotic assumptions will be approx-
imately satisfied. Individuals are likely to have made many
transitions over [0,7], the interstate distribution will be
nearly unchanging, and the A estimator will converge to
the correct parameter value.

Counterintuitively, the A estimator should also work well
for small T values. Few moves will be rendered invisible
during a short period; thus the numerator in the A estimator
approximately equals the total number of ¢ — j events.
State-specific populations IV;(¢) will be nearly constant over
a short period [0,77, and @; ~ T (because it is a weighted
average of w = T for the many individuals who remain
in state j, and ug € [0,7] for the few who make a last
move to 7). Thus the denominator in (10) will approximately
equal total exposure to i — j moves, because fOT N;(t) dt =
TN;(T) =~ u;N;(T). Consequently, when T is small, the A
estimator will (somewhat coincidentally) approximate the
true events/exposure ratio for ¢ — j transitions.

(10)

5.2 Naive Estimator (N)

A far less elegant, but possibly less dangerous, approach
is to ignore the last-move nature of the data entirely. If indi-
viduals made at most one transition during [0, 77, then last
moves and all moves are synonymous, o = 1 for every ob-
servation, and all histories are completely observed. These
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may be reasonable assumptions when 7' is low (relative to
rates ) and multiple moves over [0, T are rare. Under these
assumptions, the maximum likelihood estimator (MLE) is

fij = Vig | X, i # 4, (11)

where (using I;;; as a dummy indicator for an ¢ — j last
move by observation k)

N R
Xi =" [Lije(T = up) + Lok (ug)] (12)
k=1 j=1

measures estimated total exposure in state 1.

This estimator should work well in low-rate cases with
relatively small 7. Many migration estimation problems
in demography satisfy these conditions, and demographers
have suggested this as an approximate estimator for last
move data (Courgeau 1988, p. 165).

5.3 Backprojection Estimator (B)

Both of the preceding methods require strong a priori as-
sumptions about the size of T relative to the hazard rates .
It clearly would be be desirable to develop a procedure for
estimating transition rates from last-move data that does not
depend on such simplifying (and possibly wrong) assump-
tions.

Equation (4) can be reinterpreted for this purpose. For a
given hazard matrix, the missing populations at risk, N;(T'—
u), can be estimated by backprojecting the end-of-period
population from time 7" to time 7' — u. Estimated midperiod
populations may then be used to calculate an estimate of the
expected total number of visible ¢ — j moves:

T
Vi (1) = i / NilT = ulp, N(T)IS; (ulp) du, i # .
(13)

The right side of (13) must be calculated numerically. Ac-
curate backprojection can be accomplished by repeatedly
applying the approximation rule (Keyfitz 1985, p. 356),

-1

N(it—-A)~ [I + %u} [I — %u} N(t), (14)
with a small time increment A. For a given hazard ma-
trix p, one can thus calculate the right side of (13) by first
backprojecting the end-of-period population N(T') to times
T—A,T-2A,...,0, and then using a simple rectangular
approximation to the integral. I used this procedure in all
calculations that follow.

With this numerical procedure, it is possible to rapidly
calculate the expected number of visible moves V;; for any
given hazard matrix. A method-of-moments estimator for
the R(R — 1) off-diagonal elements may then be defined as
the solution u to the nonlinear equations

Vij(u’)=V;j’ i # j, (15)
solved by Gauss—Newton or some other appropriate tech-
nique. The Appendix contains some additional details about
this procedure.

Unlike the A and N estimators, the B estimator does not
rely on strong assumptions about 7' and p. Consequently,
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it should work well under a wide variety of rates and time
periods. I investigate this question next.

5.4 Monte Carlo Comparison

To compare the estimators, I generated sets of pseudo-
random transition histories from a Markov model. In each
of the Monte Carlo datasets, a population of N = 5,000
was distributed uniformly across three states at the start of
a period of interest, and subsequently evolved according to
a Markov process with transition rates

—.040 .003 .010
w=| 010 —.011 .015 (16)
030 .008 —.025

For each of several period lengths (T = 5, 10, 50, 100, 150),
I used the following procedure:

* Generate 200 independent sets of 5,000 individual his-
tories over [0, 7.

» Aggregate the complete histories into 200 last-move
datasets {4, Wk, U }x=1...5,000-

* For each last-move dataset, estimate the six off-
diagonal elements of p using the A, N, and B methods.

+ Construct summary measures (mean estimate, mean
percent error, mean absolute error) of the estimators
by averaging over the 200 estimates.

The T values span a wide range. At the low end, 7' =5,
most individuals (~ 90%) will make no transitions, and
most observations will be truncated. This situation favors
the N estimator, which assumes small numbers of transi-
tions over [0,77]. In contrast, when 7' = 100 or 150 with
these rates, the population will be very close to its equi-
librium interstate distribution, better matching the assump-
tions of the A estimator.

The chosen hazard rates are arbitrary, but it is possible
to extrapolate from these experiments by recognizing that
an increase in all of the hazards, together with a equipro-
portional decrease in 7', would leave the process essentially
unchanged. For example, the results reported for 7' = 50 are
virtually identical to the results one would get if rates were
all five times higher (12 = .05, u13 = .15, etc.) and T" were
equal to 10 rather than 50. Thus in addition to the literal in-
terpretation, one can interpret results for 7' = 5, 10, ..., 150
as representing experiments in which the time period re-
mains constant at 7' = 5 and the hazard rates increase thir-
tyfold.

Figure 1 presents a graphical summary of Monte Carlo
results for the three estimation procedures. Figure 1 (a), (c),
and (e), reports bias (i.e., mean estimation error across the
200 simulated data sets); Figure 1, (b), (d), and (f), report
mean absolute errors. Each plot contains results for all six
transition rates, and all calculations in the figure are ex-
pressed as percentages of the true rates. For example, the
true value of p;5 is 10 per 1,000. Over the 200 Monte Carlo
datasets with 7' = 50, the A estimator for u;o ranged from
a minimum of 13.00 to a maximum of 17.83 per 1,000. The
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Figure 1. Monte Carlo Results for Three Alternative Estimators (Asymptotic, Naive, and Backprojection) of the Six Transition Hazards in a
Three-State Markov Model. Lines in each panel correspond to the six transition rates, as follows: 1 = pi2, 2 = pi3, 3 = po1, 4 = o3, 5 = us1,
6 = ugp. For each period length T, estimates were made from 200 independent sets of N = 5,000 individual transition histories, and the results
compared to the true rates used to generate the data. (a), (c), and (e): the Monte Carlo estimates of bias (as percentages of the underlying true
rates); (b), (d), and (f): the estimated mean absolute error (also as percentages). Backprojection estimators became numerically unstable at high
values of T, and often failed to converge for T = 150. Backprojection estimators have very low bias relative to the other estimators, causing almost

complete overlap of the six lines in 1c.

mean of the 200 estimates was 15.21, making the estimated
bias in this case equal to +52.1%, which is the number re-
ported for flow 1, T'= 50 in Figure 1(a). In this particular
case, all errors were positive, so the mean absolute error
was also equal to +52.1%, as reported for flow 1, T' = 50
in 1b.

Several notable findings emerge from the Monte Carlo
experiments for estimating transition rates from last-move
data:

* The B estimator is superior to both of the other pro-
cedures. Over a wide range of period lengths 7, it has
both the lowest bias and the lowest mean absolute er-
ror among the three estimators. The only exception is
for T' > 125, when the B estimator generally did not
converge.

* For experiments with T' > 125, the B estimator was
numerically unstable and almost always failed to con-

verge. As a Markov process gets sufficiently close
to equilibrium (unchanging state distributions and ex-
ponentially distributed times since last move), the B
method cannot distinguish between scalar multiples of
@, because all would imply the same set of V;;’s. This
caused the convergence problems. As T — oo, one
must use information on the timing of moves, rather
than simply the volumes of movement, to scale the
columns of .

A estimators work reasonably well when the switch-
ing process is just beginning, or when it is close to
equilibrium. But it was inferior to backprojection (i.e.,
its bias and mean absolute error were larger) in almost
all cases. In these experiments the A estimator was the
preferred method only for the very longest 7' value,
T = 150, the cases in which backprojection failed.
The N estimator ignores the possibility of “invisible”
moves during [0, 7], and consequently is biased down-
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ward for all period lengths. This bias grows large
as T increases. For the T' values that demographers
are most likely to deal with (T" < 10 with rates like
these), the negative bias is only moderate, and in these
small samples (5,000 observations) the N estimator
has mean absolute errors only slightly larger than the
B estimator. Thus, although the B estimator is better,
the (far simpler) N estimator is in fact reasonably good
for short period lengths.

6. APPLICATION TO BRAZILIAN CENSUS DATA

6.1 Brazilian Internal Migration Data

Brazil is among the countries that collect internal migra-
tion data primarily in last-move form. Brazil does not have
a system of population registration, making its decennial
population censuses by far the most important source of
information on internal migration (Martine 1990). Brazil-
ian censuses prior to 1991 included only questions about
previous place of residence and time of last move, with no
questions about place of residence at some fixed, common
date. (The 1991 census asked both types of questions.) Be-
cause researchers lack standardized methods for using last-
move data to estimate migration rates, much of the data on
the internal redistribution of Brazil’s population during the
post-World War II period remains underutilized.

The 1970s were an especially interesting period. Large-
scale changes in land use and ownership altered the
economies of several agricultural frontier regions. Pre-
viously these areas had grown rapidly through net in-
migration, but in the 1970s they reversed course and be-
came large net population exporters. The primary example
of this migration reversal occurred in the southern state of
Parand, which went from a net in-migration of +577, 000
during the 1960s to —1.3 million during the 1970s (Mar-
tine 1990, p. 38). Many of those leaving Parand migrated
to neighboring Sao Paulo, Brazil’s most industrialized state.
Many others moved to the western Amazon region, where
the impact of migrant settlers on the local ecology has be-
come an international concern.

Detailed study of internal migration in the 1970s requires
using Brazil’s 1980 Demographic Census (IBGE 1980).
Having established the utility of the backprojection method,
I now apply it to last-move data tabulated from the 3% and
25% public use samples of that census. The 3% public use
sample omitted migration information but was used to tab-
ulate age-specific total populations. A special tabulation of
~ the 25% sample containing only individuals who reported
a change of municipio over 1970-1980 was used for tabu-
lating the interstate movers (V;; for ¢ # j). I thank Claudio
Machado for making the special 25% tabulation available.

The reference period for the last-move questions on the
Brazilian census was T' = 10 years. Brazil, like the United
States, has a federal government and is subdivided into
states. Respondents were asked about their state of resi-
dence at the time of the census, their last previous state of
residence, and the number of years that they had resided in
their current state (coded as < 1 year, 1 year, 2 years, ...,
5 years, 6-9 years, 10+ years).
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I analyze 1970-1980 movements for a three-region sys-
tem comprising Parand, the state of Sao Paulo, and the rest
of Brazil. The relatively rapid reversal of migration streams
experienced by Parand means that one must carefully con-
sider the possibility that last moves, particularly moves
away from Parand, may not have been the only moves by
individuals over the period of interest.

6.2 Backprojection Estimates

Appendix Table A.1 contains V;; data for this system,
with males and females tabulated separately, and each row
corresponding to a 5-year age cohort (those 10-14, 15-19,
..., 70+ at the time of the 1980 census). To keep the ex-
ample simple, I omit those younger than age 10 at the time
of the census. Hazard estimation for these youngest indi-
viduals must be handled differently, because they were not
at risk of migration for the entire 1970-1980 period.

Figure 2 displays B estimates of migration hazards for
1970-1980 in graphical form. Six transition hazards were
estimated separately for each (sex, cohort) pair. The results
are plotted in the figure, with straight lines joining the esti-
mates for adjacent cohorts. Once the programs are written,
the marginal computational cost of backprojection is low.
A moderately powered desktop personal computer (c. 1997)
calculated the (6 flows) x (13 ages) x (2 sexes) = 156 rate
estimates in Figure 2 in less than 5 seconds.

The estimated rates look sensible, and they have features
common to many migration-by-age schedules—for exam-
ple, peak rates are at young adult ages, and female rates
are slightly higher than male rates at young ages and lower
afterwards. It is important to highlight that these are, in a
sense, the first proper migration rate estimates from this
census. To my knowledge, no previous estimates of Brazil-
ian migration for this period have accounted carefully for
the last-move nature of the census data.

Figure 3 compares the A and N estimation methods to
backprojection for the Brazilian data. Rates are very low
for this system (or, equivalently, 7" = 10 is a relatively short
period), so the A and N estimators should have small biases,
similar to those in the 7" = 5 or 7" = 10 Monte Carlo ex-
periments. This is indeed the case; A estimators range from
14% below the corresponding B estimator to 19% above,
whereas N estimators range from 11% below to equal. (See
the figure caption for more details.) The biases in the A
and N estimators are apparently only moderate, and these
estimators may be acceptable for some applications. But it
is clearly useful to have a more accurate method, both for
producing improved estimates and for using as a baseline.
In applications with higher transition rates than those here
(e.g., studies of short-distance migration), careful consid-
eration of last-move data becomes even more important,
tipping the balance in favor of backprojection.

6.3 Additional Use of Timing Information

One potential advantage of last-move data over standard
“Where did you live 5 years ago/1 year ago?” questions is
that the last-move data contain richer information on the
timing of movements. If, for example, migration rates for a
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1970—1980 Migration Rates Estimated From Last-Move Data in Brazil's 1980 Census, Using Backprojection. With three regions, there

are six gross flows and thus six transition hazards for each of the 26 (sex, age group) cells. The six panels correspond to the six flows. Separate
backprojection estimates for each (sex, age group) cell produce six rate estimates, which are then plotted as points in the corresponding panels,
using F for females and M for males. Points in each panel are joined with line segments for ease of interpretation. All rates are in per 1,000 terms.

particular (origin, destination) pair had been increasing or
decreasing prior to the survey, then it should be possible to
observe these changes. Figure 4 illustrates this point in a
very simple fashion. I estimated rates for the second half
of the decade, 1975-1980, by reassigning individuals who
moved and reported v = 6-9 years as truncated, nonmover
observations. I then recalculated the B estimators with these

new data and T = 5. For brevity, the actual estimates for
1975-1980 are not shown. Instead, the figure reports ra-
tios of 1975-1980 hazard rates to 1970-1980 rates calcu-
lated earlier, disaggregated by cohort and sex. Ratios above
or below unity would indicate that migration was acceler-
ating or decelerating, respectively, over the course of the
1970s.
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Figure 3. Asymptotib (A) and Naive (N) Estimates of Brazilian 1970—1980 Migration Flows, Relative to the Corresponding Backprojection (B)
Estimates. For each age group and flow, the plot displays values of 100 - (estimate/B — 1) for both A and N estimates. Monte Carlo results suggest
that B estimates are likely to be close to the true hazards, thus plotted values are likely to be close to the percentage errors in A and N estimates.

Data in the figure are for males only; results for females are similar.

The top pair of lines in Figure 4 report ratios for move-
ments from Parand to the rest of Brazil. The 1975-1980
rates are much higher than the rates for the full decade,
indicating (sensibly, given the history of Brazilian migra-
tion) a sharp increase in movements from Parana to desti-
nations outside of Sao Paulo during the late 1970s. The
bottom pair of lines, for movements into Parand from
locations other than Sao Paulo, indicates that this flow
was also accelerating, but more slowly. Of course, differ-

ences between 1970-1980 and 1975-1980 rates are due
to age effects, as well as period effects. Cohort mem-
bers were all 5 years older in 1975-1980 than in 1970-
1975, and this would cause the ratios in Figure 4 to dif-
fer from unity even in the absence of intraperiod trends.
However, for all six flows (four of which are omitted
from the plot), rate changes go in the same direction
for every cohort, providing strong evidence for period
effects.
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The data in Figure 4 illustrate only one rather crude use
of the timing information available with last-move data.
More sophisticated approaches might model and fit time
trends for migration rates (Doeve 1987). The interesting
point is that standard period migration data, although easier
for demographers to use and interpret, do not allow analy-
sis of potentially important intraperiod trends. In contrast,
last-move data provide finer detail on the timing of moves
and make such analysis possible.

7. DISCUSSION

Properly estimating transition rates and probabilities
from last-move data has been an ongoing problem for
demographers studying human migration. Last-move data
are widely collected and published, but there has been
no theoretically sound approach to estimating rates from
event histories in multistate models with this peculiar kind
of censoring. The statistical literature has covered special
cases of the problem, such as repeatable events in one-state
models (Allison 1985; Baydar and White 1988; Sorensen
1977), asymptotic results for multistate processes that have
reached equilibrium (Allison 1985) or multistate models
with irreversible transitions and known initial state distribu-
tions (Keiding 1991). The general estimation problem has
remained unsolved, however.

In this article I have proposed a general estimation
method that yields consistent rate estimates even in the most
general case (multiple states, no equilibrium, unknown ini-
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tial distributions). The backprojection estimator works well
over a very wide range of transition rates. Monte Carlo
experiments demonstrate that the backprojection estima-
tor is very accurate, even in small datasets. The experi-
ments also demonstrate that backprojection is superior to
two other available estimators, both of which are based on
strong assumptions about the Markov process generating
the data. The backprojection method fails only in extreme
cases of very long time periods or very high transition
rates—specifically, it fails to converge when the Markov
process gets very close to its equilibrium state during the
period under study. This problem is unlikely to cause any
difficulties in real-world estimation problems.

An application of backprojection to internal migration
data from the 1980 Brazilian census shows that the method
produces reasonable estimates for interstate migration rates.
The results also illustrate, albeit crudely, how one can use
last-move data to learn about the timing of migration flows
over the reference period.

The backprojection method developed in this article is ap-
propriate for first-order Markov survival models with con-
stant hazard rates. These models are the workhorses of ap-
plied migration research, but they are obviously limited. Fu-
ture research might consider estimators for last-move data
generated by processes exhibiting duration dependence in
transition hazards, or by processes in which the hazards
vary over calendar time. It might also be fruitful to con-
sider estimation approaches other than method of moments.
I hope that this article provides a starting point for such ex-
plorations.

APPENDIX: EXAMPLE OF RATE ESTIMATION
FROM BRAZILIAN CENSUS DATA

This Appendix briefly discusses estimation for one specific case:
1970-1980 rates for males aged 2024 years in 1980, for migra-
tion flows between Parana (state 1), Sao Paulo (state 2), and rest
of Brazil (state 3). The last-move data in Table A.1 indicate that in
this age category there were 337,009 males who resided in Parana
over the entire 1970-1980 period (V11 = 337, 009), 5,988 who last
moved from Sao Paulo to Parana (V51 = 5, 988), and so forth. Ar-
ranging the visible moves into a matrix with elements indexed in
(column, row) order, we have

337,009 5988 17,701
V= 51,314 1,073,885 229,494 |,
30,077 37,140 3,910,328

and the observed population at the end of the period is equal to

337,009 + 5,988 + 17,701

N(1980) = | 51,314 + 1,073,885 + 229,494
30,077 + 37,140 + 3,910, 328
360,698
= 1,354,693
3,977,545
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The question to answer is “Given these end-of-period populations,
for what 3 x 3 matrix of migration hazards y is the observed V
for 1970-1980 equal to the expected value V(11)?” The columns
of any valid p must each sum to 0, and off-diagonal elements
must be nonnegative. Thus the search for p is a search through
RS. The rows of V must sum to N(1980), so we may take as
independent “targets” the six off-diagonal elements of V. This
yields six nonlinear equations in six parameters,

Viz = Via(paa, t13, po1, a3, a1, 432),

Vis = Via(tiz, pis, po1, Hos, 431, f432),

Va1 = Var(paz, pis, po1, Hos, a1, p3z),

Vas = Vas(paz, pis, pa1, Hos, a1, f32),

Vai = Vai(pi2, s, a1, Has, Hat1, 432),
and

Vaa = Vaa(pir2, 13, pa1, pos, a1, 432),

which can be solved by Gauss—Newton. The only unusual feature
of the estimation procedure is the calculation of expected counts
of visible moves on the right sides of the equations. These calcu-
lations must be performed repeatedly during the search through
w space. Calculations are done in two steps, using (13) and (14).
Specifically, for any given trial value fi, we first backproject the
regional populations from 1980 to 1970 in increments of, say,
A = .1 years using (14):

N(1979.9) ~ [T + .05 "} [T — .05]N(1980),

Table A1.
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N(1979.8) = [I + .05~ [I — .05@]N(1979.9),

and so forth. After backprojecting, we plug the estimated state-
specific populations into (13) to calculate the expected number of
visible moves for each interstate flow. The integral is calculated
numerically, with a simple rectangular approximation. For exam-
ple, with A = .1, the calculation for visible moves from Parana
to Sao Paulo is

Via (i) = finy Y, N1[1980 — ulfi] explu - (~fizs — fizs)]A,
ueU

where U = {.1,.2,...,10}.

I solved the system of equations using a standard Gauss—Newton
algorithm, with numerical derivatives (see, e.g., Amemiya 1985,
chap. 4). I wrote the program in Pascal and ran it on a desktop
computer. Estimated rates for the aged 20-24 years male data are
p12 = .013466[Parana to Sao Paulo],

p13 = .007998[Parana to Rest of Brazil],
w21 = .000537[Sao Paulo to Parand],

u23 = .003096[S4o Paulo to Rest of Brazil],
p31 = .000484[Rest of Brazil to Parand],
uz2 = .005745[Rest of Brazil to Sao Paulo].

Each of these rate estimates appears as an “M” point for 20—
24-year-olds on the corresponding plot in Figure 2. Similar cal-
culations yield six estimated rates for each of the other (sex,
age) combinations. All results are then presented graphically in
Figure 2.

1980 Brazilian Census, Last-Move Data 1970-1980

To Paranéa from

To Sao Paulo from To rest of Brazil from

Age in Sao Rest of Sao Rest of Sao Rest of
Sex 1980 Parana Paulo Brazil Parana Paulo Brazil Parana Paulo Brazil
M 10-14 476,965 6,905 18,979 46,895 1,132,182 99,809 39,967 37,730 5,325,589
M 15-19 429,886 5,617 18,110 46,015 1,156,263 122,478 34,898 30,110 4,829,669
M 20-24 337,009 5,988 17,701 51,314 1,073,885 229,494 30,077 37,140 3,910,328
M 25-29 269,695 6,781 17,885 38,266 942,381 194,357 24,248 45,642 3,093,982
M 30-34 226,063 6,040 14,299 24,995 812,679 104,742 19,749 39,863 2,556,728
M 35-39 189,321 4,801 10,220 17,310 672,851 57,710 15,833 27,610 2,120,879
M 40-44 179,184 3,560 7,837 14,175 613,078 38,284 13,562 19,439 1,959,746
M 45-49 143,852 2,110 5,558 10,888 507,644 24,738 10,095 12,757 1,672,124
M 50-54 121,494 1,695 4,314 8,835 458,537 19,453 7,536 9,449 1,398,944
M 55-59 92,341 1,305 2,969 6,178 341,449 13,533 5,036 6,322 1,094,983
M 60-64 70,443 801 2,003 4,025 252,458 9,176 3,066 3,808 850,091
M 65-69 54,976 634 1,389 2,729 198,967 5,875 2,021 2,726 716,134
M 70+ 64,259 782 1,510 2,457 250,931 5,547 1,867 2,738 927,468
F 10-14 465,416 6,723 18,958 47,387 1,108,707 107,614 39,223 37,221 5,260,418
F 15-19 437,686 6,198 19,353 49,222 1,152,049 147,551 33,418 32,487 5,005,372
F 20-24 343,155 6,533 19,513 48,341 1,061,281 214,856 27,750 37,171 4,042,830
F 25-29 277,651 6,668 18,633 36,520 941,941 177,765 23,456 41,242 3,308,653
F 30-34 227,194 5,174 12,912 22,705 796,873 103,134 17,437 32,610 2,680,709
F 35-39 189,309 3,694 9,102 15,627 678,702 55,179 13,671 21,135 2,230,456
F 40-44 163,655 2,734 6,246 12,278 604,075 37,264 10,463 14,486 2,024,042
F 45-49 135,436 1,759 4,844 10,014 518,141 26,795 7,415 8,925 1,634,751
F 50-54 114,318 1,490 3,910 7,607 465,494 22,931 5,337 6,832 1,453,772
F 55-59 86,694 1,034 2,667 5,477 358,132 16,993 3,199 4,783 1,115,049
F 60-64 63,336 747 1,928 3,382 276,650 11,386 2,061 3,472 884,611
F 65-69 49,520 710 1,487 2,097 221,095 8,005 1,486 2,651 760,102
F 70+ 62,555 973 1,848 2,135 315,858 8,495 1,503 3,191 1,102,661

NOTE: Figures in italics are for nonmovers (left-censored observations).
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