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in Migration Models 

There are many methods of modeling migrant f o w s  within a set of areal units, 
but it is common in most to incorporate some measure of distance as an explan- 
atory variable. These distances are effectively meant to represent the typical dis- 
tance between pairs of areas that would be traveled by potential migrants. They 
are usually calculated between population-weighted centroids derived f o r  each 
zone. I t  is argued here that this method of calculating distance is biased and 
that the zonal system used will influence the final model parameters that are 
intended to describe the underlying migration process. The distances between 
nearby zones will be particularly poorly specijied using this approach, but 
other problems arise which relate to the shape of the zones and the position of 
the zones in  relation to  each other. This paper describes an alternative method 
of calculating these distances which reduces this bias. I t  is shown that the result- 
ing modelsJit the data f a r  more satisfactorily and that the residuals f rom models 
incorporating this approach are signijicantly different f rom those identijied f rom 
models that use the standard method of specqying distance. 

INTRODUCTION 

A large literature has developed that discusses the most appropriate methods 
for modeling migration matrices. Following the early work of Zipf (1946) and 
Stewart (1948), multiple regression models evolved using the basic gravity model 
variables of origin and destination size and the distance between these places to 
predict migration. It is expected that the flows will be positively related to the 
population size of both the origin and destination and negatively related to the 
distance between them. A range of alternative socioeconomic variables may be 
incorporated to improve these types of model. 
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More recently, the use of ordinary least squares (OLS) regression in modeling 
counts of migrants has been criticized, primarily because it is based on the con- 
tinuous normal distribution. Flows of migrants are non-negative whole numbers 
and consequently a discrete probability distribution is appropriate; if each case is 
assumed to be independent the Poisson distribution should be used (Flowerdew 
1991). Poisson regression models can be fitted as generalized linear models in 
packages such as GLIM and the goodness of fit can be assessed using the devi- 
ance; comparing the model deviance with the null model deviance (the most 
basic model, which assumes each individual flow has the mean size) it is possible 
to calculate a pseudo r2, or G2, value which can be compared between models. 
Additionally, Baxter (1982) has shown that the widely used family of spatial inter- 
action models based on entropy maximizing (Wilson 1970) are special cases of 
Poisson regression models. 

Considerable attention has been given for many years to the role of distance 
in migration (for example, Olsson 1965). Migration is generally assumed to reduce 
with distance because it increases the generalized costs of moving, or because 
it reduces the amount of information about destinations available to potential 
migrants. Distance may be measured in a number of ways, including Euclidean 
distance, road distance, time distance, or cognitive distance. Euclidean distance 
is most commonly adopted, mainly because it is relatively simple to compute 
given the coordinates of centroids for each of the origin and destination areas. 
Use of more sophisticated distance measures appears to make little difference 
to model fit (Olsson 1965, p. 58) ,  except in cases where Euclidean distance in- 
volves crossing a barrier such as an estuary or bay. Debate has also evolved over 
how distance decay should be modeled (Taylor 1975). In the early work of 
Stewart (1948) and Zipf (1946), which was based on Newton’s original gravity 
model, migration was assumed to decline with the square of distance. More 
recently two forms of distance decay function have dominated the literature, 
the power and the negative exponential functions. Various issues influence the 
adoption of either of these functions, but it generally seems that the negative 
exponential function is more effective when dealing with short-distance interac- 
tion, such as migration within urban centers, and the power function is more 
effective for describing longer-distance flows, such as migration between urban 
areas (Fotheringham and O’Kelly 1989). 

DISTANCE CALCULATIONS 

Data in migration studies usually refer to zones (states, counties, etc.) that 
have spatial extent, but distances must be computed between points, usually 
the centroids of the zones. These distances should be representative of the sep- 
aration between zones, but error is inevitably introduced by this process. Arbia 
(1989) refers to this problem of incorrectly representing geographical informa- 
tion, necessitated by the need to perform some statistical procedure, as “model 
error.” Clearly intercentroid distances are affected by the scale at which zones 
have been defined and by how the zonal boundaries have been drawn. The 
modifiable areal unit problem (Openshaw 1984) is therefore relevant. The 
issue of distance measurement for spatial zones has been discussed in some 
detail by writers on the location/allocation problem (reviewed by Current and 
Schilling 1987); however their concern is to design an optimal network of facili- 
ties despite this source of error, whereas the objective here is to investigate how 
far the error affects our interpretation of the effect of distance on migration 
flows. 

The problem is stated clearly in the context of migration modeling by Gordon: 
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A more general problem for analysts of interregional flows stems from the use 
of distances between population centroids of large regions to approximate the 
actual distance traveled by migrants between pairs of regions. On average, these 
movement lengths will almost always be less than the distance between centroids 
and, depending on the distribution of population, may be very much shorter. A 
better approximation can be obtained on the basis of simulated flows between 
smaller units, if an estimate of the “true” distance decay function for migrants is 
available. (Gordon 1975, p. 161) 

Despite this statement, Gordon gives little detail of how to make this approxima- 
tion, although he states that it improves the interregional migration model formu- 
lated by Weeden (1973) on which he is commenting. Another relevant study was 
undertaken by Plane (1984) who, in attempting to derive “inferred distances” on 
the basis of migration flows, experimented with the effects of random displace- 
ment of zonal centroids, finding that it made little difference. 

The fullest examination of this question in the geographical literature is 
Webber’s (1980) theoretical analysis of aggregation in spatial interaction models. 
He shows that calculation of distances between zones in an origin-constrained 
spatial interaction model based on population-weighted centroids leads to biased 
estimates of mean distances traveled, and to differences in results dependent on 
the zonal system used. He proposes calculating the proportion of moves from 
zone k that go to zone 1 as a weighted average of the proportion of moves from 
zone i that go to zone j for all i in k and all j in 1; the weights are based on 
the proportion of the population of k residing in i. This removes the bias in 
estimates of mean distances traveled. The use of migration-weighted distances 
adopted in this paper for a different form of spatial interaction model is similar 
in spirit to Webber’s results. 

It is important to be clear about what the distance variable in migration studies 
is actually intended to measure. In a model of spatial interaction the empirically 
observed flows are related to the distance between the respective areal units 
and this is a measure of the “average” distance that potential migrants in these 
places are apart. Thus, a population-weighted centroid is more appropriate than 
the geometrical centroid. However, to assume that migrants from place i to 
place J’ have the same distribution as the general population of i, or that those 
who move will end up evenly distributed across j ,  is likely to be incorrect. The 
very nature of the distance decay commonly observed in migration flows means 
that, other factors being equal, those living in that part of place i which is close 
to place j will be more likely to migrate to j than those living in parts of place i 
which are more distant from place j .  Obviously, the population-weighted cen- 
troid of i is the average location of the entire population resident in i, and not 
the average location of potential migrants from i to j. Measuring the distance 
from i to j between their respective population-weighted centroids will there- 
fore introduce bias into the model. It will be a more important source of bias 
for zones that are close to each other and effectively negligible for distant pairs 
of zones. 

The spatial structure of the areal units may also introduce bias. Contiguous 
pairs of zones that have long common boundaries compared to their areas are 
likely to experience more migration than those which have a short common 
boundary compared to their areas, simply because there will be more short- 
distance moves that happen to cross the boundary. Similarly, zones that are 
elongated rather than compact are liable to have more short-distance, cross- 
border migrants. The size of the zone is also important as the larger the zone, 
the more inaccurate the population-weighted centroid will be as a measure of 
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the average migration location for in- and out-migrants to particular destinations. 
These ideas are demonstrated by Rogerson (1990), using ideas originally devel- 
oped by the eighteenth-century scientist Buffon. He calculates the relationship 
between migration distance and the probability of crossing a border under vari- 
ous assumptions about region size and shape and the nature of the distance decay 
function. In some zonal systems, one zone may completely encircle another. This 
makes the estimation of distance between population-weighted centroids even 
more of a problem as they may be located very close to each other. Indeed, the 
population-weighted centroid of the outer area may well be located within the 
inner area. Less extreme than this “doughnut” problem is the “croissant” prob- 
lem where one zone, curved in shape, partly surrounds another. 

This paper considers the problem of defining the distances between the fifty- 
five counties1 of England and Wales for use in migration modeling. A method 
for estimating the “average migration distance” that migrants are likely to have 
moved between these zones is proposed and the resulting model fit, parame- 
ters, and residuals are examined. 

THE STUDY AREA AND DATA 

The problem of measuring distance would be simplified if individual-level 
flows were measured between point locations, rather than areas, but in the anal- 
ysis of migration the data are generally retrieved from sources, such as censuses, 
that provide data aggregated into areal units. In this study, the data were extracted 
from the Special Migration Statistics Set Two (SMS 11) derived from the 1981 
Census and held at the Manchester Computer Centre (MCC). The SMS TI pro- 
vide a 100 percent count of the total number of migrants, disaggregated by sex, 
moving between the wards of England and Wales and the similarly sized post- 
code sectors of Scotland. These zones usually contain a few thousand people. 
It is possible to extract flow data for any aggregation of wards that aggregate 
neatly into Local Authority districts which themselves aggregate neatly into 
counties. In this theoretical study the data were extracted at the county level 
for England and Wales (Figure 1). 

According to these data there were 4,230,417 people whose address at the 
time of the 1981 Census was different from their address one year previously. 
Of these, only 1,062,670 moved between the fifty-five counties, emphasizing the 
strength of the distance decay effect on migration within England and Wales. 
Of the 2,970 potential intercounty flows only one (from Powys to the Isle of 
Wight) was zero. The remaining flows ranged between 52,054, from Inner to 
Outer London to 2 from the Isle of Wight to Mid Glamorgan, and from North- 
umberland to the Isle of Wight. There was considerable variation in the popula- 
tions of these fifty-five counties with a maximum of 4,182,980 in Inner London 
and a minimum of 108,128 in the Welsh county of Mid Glamorgan. In general 
those counties with the largest populations tend to have the smallest areas. 

POPULATION-WEIGHTED CENTROID MODEL 

A variety of methods exist for calculating areal centroids, but in migration 
modeling it has been assumed that population-weighted centroids are most appro- 
priate. These are related to the distribution of the population within each area 

Some of the fifty-five areas are not strictly counties. Rather, they are the units corresponding to 
the files used for making the 1981 Census Enumeration District data available to the academic com- 
munity. The former metropolitan county of Greater London is divided into Inner and Outer Lon- 
don; the other former metropolitan counties and the shire counties make up the remaining units. 
The term “county” is used here to refer to these units. 
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FIG. 1. “Counties” in England and Wales 

and have been commonly adopted for the calculation of distance (for example, 
Flowerdew and Boyle 1992; Flowerdew and Salt 1979; Gordon 1988). The 1981 
British Census provides areal centroids for the 130,000 Enumeration Districts 
(EDs) in Britain which were manually derived using Ordnance Survey maps. 
Ward centroids are calculated as the population-weighted average of those ED 
centroids that fall within a particular ward; wards are neat aggregations of EDs. 
The x and y coordinates of the ward centroid are calculated as 

(1) 

(2) 

w x  = c xa * pa/p 

WY = c Yi * PilP 
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where xi, yi, and pi are the eastings, northings, and population of each ED within 
a ward, and p is the total ward population. This method can be used to derive 
centroids for areas that are aggregations of wards, and this procedure was used 
to calculate population-weighted centroids for the fifty-five counties and the 403 
districts that aggregate neatly into these counties. The Euclidean distance 
between these centroids is then calculated using: 

(3) 
2 dij = 2/(xi - ~ j ) ~  + (yi - yj) 

where xi. xj, yi, and yj are the eastings and northings of the centroids in areas i 
and j and &j is the distance between them. Some of these distances were altered 
where physical barriers, such as river estuaries, were thought to make Euclidean 
distance inappropriate. A Fortran program was written to recalculate these distan- 
ces for those pairs of areas that were misrepresented by straight-line Euclidean 
distances because of an intervening water body (such as between Cornwall and 
West Glamorgan). 

The resulting distances in the county-level migration system ranged from 
582.3 kilometers between Cornwall and Northumberland to only 1.34 kilo- 
meters between Inner and Outer London. The latter of these pairs of counties 
is an example of the “doughnut” problem as Inner London is entirely encom- 
passed by Outer London and the resulting population-weighted centroids are 
located close to each other in Inner London. 

The flows between the fifty-five counties were modeled using a gravity model 
based on the Poisson distribution where the explanatory variables were the origin 
and destination populations and distance was measured between population- 
weighted centroids. The Poisson regression model my be defined as 

where the random variable K is assumed to have a Poisson distribution whose 
parameter is logarithmically linked to a linear combination of the explanatory vari- 
ables (Lovett and Flowerdew 1989). The gravity model may be expressed as 

(5) M.. a3 - - exp(Po + InPi + P21nP’ + Pslndij) + Ei 

where 
Mij = the migrants moving between i and j, 
Pi = the total population in i, 
Pj = the total population in j, 
dij = the distance between i and j. 

The fit of each model may be assessed using the deviance measure which is calcu- 
lated as 

where A&j = the expected migrants moving between i and j .  
The model deviances can be compared to the null model deviance to estimate 

the fit of each model. The null model is the simplest model where the estimated 
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TABLE 1 
Model Parameters and Deviances 

Degrees of Contiguity 
Deviance freedom Constant In C In P, In 4, parameter 

Model 1 534,675 2,966 -6.250 0.7061 0.4685 -0.795 

Model 3 355,068 2,966 -9.994 0.7863 0.5361 -0.502 1.195 
Model 4 319,124 2,966 -9.009 0.8272 0.5900 -0.957 0.695 

Model 2 357,691 2,966 -6.541 0.7893 0.5601 -1.248 

Model 1 =Gravity model with population-weighted centroid distances 
Model 2 =Gravity model with migration-weighted distances 
Model 3 =Gravity model with population-weighted centroid distances and a contiguity dummy variable 
Model 4 =Gravity model with migration-weighted distances and a contiguity dummy variable 

values of each observed flow are given as the average flow size within the entire 
system. Standardized residuals from these models can be calculated from 

The gravity model was fitted to the 2,970 intercounty flows and the resulting 
deviance of 534,675 was a reduction of 77.6 percent from the null model devi- 
ance of 2,385,862 (Table l). The deviance reduction suggests that the model 
explains a large proportion of the variation, but it does not fit the data. In those 
cases where the migration matrix is not excessively sparse (Boyle and Flowerdew 
1993) the chi-squared test for goodness of fit is a reasonable measure of the 
success of the model; for the model to be regarded as providing a good fit to the 
data, the deviance should be not much in excess of model degrees of freedom 
(slightly less than the sample size if only a few parameters are fitted). This model 
used distances calculated between each of the fifty-five population-weighted cen- 
troids; the distance parameter shows quite a strong distance decay in the migra- 
tion of people between the counties of England and Wales (Table 1). The popula- 
tion parameters suggest that migration is not proportional to population size, 
particularly at the destination; destinations with smaller populations attract pro- 
portionally more migrants than destinations with large populations. 

MIGRATION-WEIGHTED CENTROID MODEL 

It  has been suggested above that the distances calculated between population- 
weighted centroids are inappropriate estimates of the average distances moved by 
migrants between a pair of areal units. The distances will tend to overestimate 
the average distances moved and the bias will be most severe for those pairs of 
areas that are close to, or contiguous with, each other. This study addresses this 
problem by implementing an innovative method of estimating these average 
migration distances. 

As suggested above the results from this model are biased, however, as the 
distances used between each pair of counties do not reflect the probable aver- 
age migration distance likely to be moved between them. In order to circumvent 
this problem estimates of the average intercounty migration distances moved are 
required. This can be done by breaking down the single flow from county i to 
county j into estimated flows between their constituent parts. The estimation 
procedure utilizes the county-level gravity model parameters to estimate the 
flows between a larger set of zones that aggregate neatly into the county bound- 
aries, in this case, the 403 Local Authority districts (the distances between the 
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districts are derived from population-weighted centroids). For the purpose of 
this theoretical study, it is assumed that we know the populations of the dis- 
tricts but not the migration between them. 

The migration between districts is estimated on the basis of the model 
derived at the county level: 

The migration-weighted distance (MWDij )  between each pair of counties is then 
estimated as 

where 

& ~ A B  = estimated migration between district A and district B, 
d A B  = distance between district A and district B. 

The migration-weighted distance between county i and county j is the average of 
the distance from each district in i to each district in j ,  weighted by the estimated 
number of migrants in each interdistrict flow. Note that the migration-weighted 
distances are not commutative; M W D ,  is not equal to MWDji.  It is then possible 
to reestimate the intercounty gravity model, incorporating the revised distance 
estimates. A new set of parameters is produced. These can then be used to provide 
a second set of estimated interdistrict flows which can then be converted into a 
second set of intercounty migration-weighted distances. The process is iterative 
and continues until the deviance for the intercounty model stabilizes. Of course, 
the modifiable areal unit problem (MAUP) would suggest that using estimates at 
one scale may be unreliable at another scale, but Amrhein and Flowerdew (1992) 
suggest that this may be less of a problem in migration models that are correctly 
specified as Poisson models. Additionally, the results below confirm that this 
approach is a substantial improvement on the standard method of measuring 
distance. 

COMPARISON OF MODELS 

The deviance for the final intercounty model (model 2) is shown in Table 1 
and this is clearly a substantial improvement on the deviance from the original 
county-level model accounting for 84.3 percent, rather than 77.6 percent, of the 
null deviance. As we would expect from the theoretical arguments stated through- 
out this paper, the distance parameter also becomes progressively steeper, high- 
lighting the relatively short distances over which migrants tend to move. 

The majority of the migration-weighted distances were shorter than the dis- 
tances calculated from the population-weighted centroids. The relative differ- 
ence between these two distance measures was expected to be greatest when i 
and j are close together. Figure 2 plots the distances derived from population- 
weighted centroids against the migration-weighted distances where the inter- 
population-weighted centroid distance was less than 100 kilometers. This shows 
that migration-weighted distances are shorter when the pairs of counties are 
close. However, the distance from Inner to Outer London (the “doughnut” 
example) was lengthened from 1.3 kilometers to 13.23 kilometers-the largest 
increase in distance between two counties. The largest reduction in the distance 
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FIG. 2. Distances Calculated from Population-Weighted Centroids and Migration-Weighted 
Distances Where the Population-Weighted Centroid Distance Is Less than 100 Kilometers 

TABLE 2 
Observed and Estimated Contiguous and Noncontiguous Flows 

Noncontieuous flows Contieuous flows 

Observed 587,980 474,690 
Estimated (model 1) 730,386 332,285 
Estimated (model 2) 654,306 408,365 

TABLE 3 
Observed and Estimated Flows for Models 1 and 2 

Model 2 

M., > M., Mt1 c 

Model 1 M"3 > 4 3  683 87 
Mt3 < Mz3 524 1,676 

between two counties was 23.52 kilometers between Powys and Mid Clamorgan. 
Of the 2,970 migration-weighted intercounty distances, 2,218 were shorter than 
the distances derived from population-weighted centroids. 

The total observed and estimated numbers of migrants between contiguous 
and noncontiguous counties are shown in Table 2 and the estimated migrant 
totals are much more similar to the observed totals in model 2. While the esti- 
mated number of migrants moving between contiguous counties was 142,405 
smaller than the observed total in model 1, it was only 66,325 smaller in model 
2. It is not surprising that part of the contiguity effect is still apparent, because 
the correction based on interdistrict flows cannot be expected to adjust for the 
presence of very short distance flows that happen to cross county boundaries. 

Table 3 provides a breakdown of the 2,970 flows based on whether the esti- 
mated number of migrants was larger or smaller than the observed number in 
models 1 and 2. The off-diagonal totals are those where the estimated number 
of migrants from the two models were in the opposite direction and as many as 
611 fell in this combined category. This shows that a considerable number of 
flows may be misinterpreted if the researcher is interested in identifying partic- 
ular flows that are larger than expected. Table 4 shows that the flows over dis- 
tances less than 50 kilometers and between 150 and 299 kilometers were pre- 
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TABLE 4 
Observed and Estimated Flows over Different Distances 

< 50 50-149 150-299 > 300 

Observed 310,065 431,615 247,207 73,783 
Estimated (model 1) 253,410 400,359 326,244 82,658 
Estimated (model 2) 294,200 479,132 242,415 46,923 

TABLE 5 
Ten Highest Contributors to the Deviance from Model 1 

Origin 

Outer London 
Outer London 
Outer London 
Outer London 
West Midlands 
Surrey 
West Midlands 
Cornwall 
Tyne and Wear 
West Yorkshire 

Destination 

Inner London 
Essex 
Surrey 
Kent 
Staffordshire 
Hampshire 
Hereford and Worcester 
Devon 
Northumberland 
North Yorkshire 

Observed Estimated 

30,930 
12,535 
11,745 
9,294 
8,061 
4,665 
6,146 
2,242 
3,864 
4,646 

72,696 
3,113 
3,801 
2,648 
2,173 

1,840 
930.3 

317.2 
967.4 

1,348 

Denance 

30,669 
16,077 
10,614 
10,047 
9,356 
7,573 
6,215 
4,919 
4,909 
4,902 

TABLE 6 
Ten Highest Contributors to the Deviance from Model 2 

Origin Destination Observed Estimated Denance 

Inner London 
Hampshire 
Devon 
Outer London 
Cornwall 
Devon 
Surrey 
West Yorkshire 
Manchester 
Norfolk 

Outer London 
Devon 
Hampshire 
Essex 
Devon 
Cornwall 
Hampshire 
Manchester 
Merseyside 
Suffolk 

52,054 
2,219 
1,945 

12,535 
2,242 
2,432 
4,665 
1,356 
1,813 
2,449 

32,481 
338.9 
303.8 

439.6 
549.9 

6,882 

1,789 
4,362 
5,063 

679.2 

9,954 
4,579 
3,940 
3,727 
3,701 
3,467 
3,191 
2,843 
2,776 
2,742 

dicted better by model 2 than model 1, while the prediction of the flows 
between 50 and 149 kilometers and over 300 kilometers were predicted better 
by model 1. 

The major contributors to the deviance from model 1 are provided in Table 
5 .  It is evident that all ten of these flows were between contiguous counties and 
the decentralizing flows from Outer London and the West Midlands were much 
larger than predicted, while the flow from Outer London into Inner London was 
much smaller than predicted (not surprisingly given the small distance value 
derived from the population-weighted centroids). As many as seventy-seven of 
the top one hundred contributors to the deviance were between contiguous 
counties. In contrast, Table 6 provides the major contributors to the deviance 
from model 2. The flow from Outer to Inner London remained poorly pre- 
dicted, although the estimate was a significant improvement from model 1. 
One of the decentralizing flows from Outer London remained in the list, but 
the flows out of the West Midlands conurbation were no longer included. 
Seven of the flows did not appear in Table 5 .  Flows involving Devon, Corn- 
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FIG. 4. Flow Deviances from Model 2 and Population-Weighted Distance 

wall, and Hampshire now appear to be unusually large and it is possible that the 
movement of armed forces personnel may be influential in these flows (Boyle 
1995). The flows between Manchester and Merseyside and West Yorkshire and 
Manchester were much smaller than expected. Eight of these top ten flows and 
only forty-five of the top one hundred were between contiguous counties. 

It is possible to divide the overall model deviance into contributions from 
each individual flow; those flows with high contributions to the deviance are 
the ones that the model fits least well, and deviance contributions can be 
regarded as model diagnostics in a similar way to residuals. Figures 3 and 42 
plot contributions to deviance against the population-weighted distances. The 
high deviances from model 1 are predominantly short distance flows with a 
small number of very poorly estimated flows. On the other hand, the highest 
deviances from model 2 were less dominated by the flows over short distances. 
Even so, large deviance values are obtained when the absolute difference be- 
tween Mij and Mij is large. This will tend to occur when Mij is large and this 
is usually the case when the areas are close together. 

An alternative method is to calculate standardized residuals that are positive 
when the observed flow is larger than the estimated flow and negative other- 
wise. The five largest positive and negative residuals are shown in Table 7 and 

Note that the 2/ axis on Figures 3 and 4 and Figures 5 and 6 are not identical. This has been done 
to emphasize the distribution of the data along the r axis. 
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TABLE 7 
Highest Positive and Negative Standardized Residuals from Model 1 

Origin Destination Observed Estimated Residual 

Outer London 
Outer London 
Outer London 
West Midlands 
Surrey 
West Midlands 
South Yorkshire 
Manchester 
Inner London 
Outer London 

Essex 
Kent 
Surrey 
Staffordshire 
Hampshire 
Derbyshire 
Manchester 
South Yorkshire 
Outer London 
Inner London 

12,535 
9,294 
11,745 
8,061 
4,665 
516 
492 
503 

52,054 
30,930 

3,113 
2,648 
3,801 
2,173 

1,380 
1,517 
1,787 
63,876 
72,696 

930.3 

168.9 
129.2 
128.9 
126.3 
122.4 
-23.3 
-26.3 
-30.4 
-46.7 
-154.9 

TABLE 8 
Highest Positive and Negative Standardized Residuals from Model 2 

Ori@n Destination Observed Estimated Residual 

Inner London 
Hampshire 
Devon 
Cornwall 
Cornwall 
South Yorkshire 
Manchester 
Manchester 
West Yorkshire 
Manchester 

Outer London 
Devon 
Hampshire 
Devon 
Hampshire 
Manchester 
South Yorkshire 
West Yorkshire 
Manchester 
Merseyside 

52,054 
2,219 
1,945 
2,242 
959 
492 
503 

1,690 
1,356 
1,813 

32,481 
338.9 
303.8 
439.6 
101.1 

2,292 
2,666 
4,665 
4,362 
5,063 

108.6 
102.1 
94.2 
86.0 
85.3 

-37.6 
-41.9 
-43.6 
-45.5 
-45.7 

seven of the flows were between contiguous counties. The large positive resid- 
uals tended to be in the south of England, while the three negative residuals 
that were not contiguous were flows within the North and Midlands of England. 
Table 8 shows the residuals from model 2 and five of these were between con- 
tiguous counties; only three of these residuals appeared in Table 7. There was a 
general tendency for the negative residuals to be flows in the north and north- 
west of England, while the positive residuals continued to be dominated by 
flows involving Cornwall, Devon, and Hampshire. It is noticeable that the esti- 
mated flow between Inner London and Outer London is much smaller than the 
observed flow. As with the major contributors to the deviance, the largest posi- 
tive and negative residuals in model 2 were considerably different from those in 
model 1. 

Figure 5 plots the standardized residuals from model 1 against distance. A 
number of short-distance flows were particularly high positive residuals, while 
the flow from Outer to Inner London stands out as a high negative residual. 
Figure 6 provides a similar plot for the results from model 2 and, although 
short distance flows continued to be identified as high residuals, the spread of 
high positive and negative residuals in relation to the distance moved was much 
more even. 

INCLUDING CONTIGUITY DUMMY VARIABLES 

It is common to introduce a contiguity dummy variable into such models 
which Weeden (1973) and Jun and Chang (1986) suggest is justified if it is as- 
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FIG. 6. Standardized Residuals from Model 2 and Population-Weighted Distance 

sumed that flows between noncontiguous counties will be primarily for employ- 
ment reasons while flows between contiguous areas may be more likely to be 
housing related. I t  has the effect of making the observed and estimated total 
flow between all pairs of contiguous areas equal and it will inevitably improve 
the model fit. I t  could be argued that much of the bias introduced by using 
distances measured between population-weighted centroids will be accounted 
for using such a dummy variable. In Table 1 the parameter estimates and devi- 
ances are provided for models that include a contiguity dummy variable. Model 
3, which includes distances calculated from population-weighted centroids and 
a contiguity dummy variable, was a significant improvement over model 1 and the 
deviance was slightly lower than that for model 2. The distance decay parameter 
became very small once the contiguity dummy variable was included. Model 4, 
which included migration-weighted distances and a contiguity dummy variable, 
was the best model of all, and the relatively large reduction in the deviance 
from model 3 shows that the migration-weighted distances made important im- 
provements to the estimates of both contiguous and noncontiguous flows. The 
distance decay parameter remained quite large in this case. 

Table 9 shows that as many as 385 of the 2,970 residuals changed sign be- 
tween models 3 and 4. The ability of the two models to estimate the number 
of migrants moving over different distances (Table 10) once again showed that 
the model using migration-weighted distances (model 4) provided more accurate 
estimates of short-distance flows and flows between 150 and 299 kilometers. A 
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TABLE 9 
Observed and Estimated Flows for Models 3 and 4 

Model 4 

M., > nit, M.. < ni.. 
Model 3 Mlj > M*j 880 75 

Mtj < Mij 310 1,705 

TABLE 10 
Observed and Estimated Flows over Different Distances 

<50 50-149 150-299 >300 

Observed 310,065 431,615 247,207 73,783 
Estimated (model 3) 291,648 407,109 281,923 81,991 
Estimated (model 4) 302,745 458,573 245,927 55,424 

number of differences between the major contributors to the deviance and stan- 
dardized residuals were identified between models 3 and 4 as was the case for 
models 1 and 2. For those interested in identifying the major unusual flows 
among the fifty-five counties in England and Wales, the results from these two 
models would provide very different interpretations. 

CONCLUSION 

An original method for determining distances between areal units, for use 
in modeling spatial interactions, has been discussed and it is argued that this 
procedure reduces the problems associated with calculating distances from 
population-weighted centroids. The method gives large improvements in model 
fit, which result primarily, but not entirely, from the enhanced ability to predict 
flows over short distances. In general, models using distances calculated from 
population-weighted centroids underestimate the size of these flows because of 
the overestimation of the average distance moved by migrants between nearby 
areas. Interpretations drawn from such models are liable to overemphasize the 
importance of these short-distance moves. By improving the way the distance 
decay effect is specified, the impact of substantive factors affecting migratiofi 
can emerge more clearly. 
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