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Introduction
In this Chapter, we will explore the analysis of global spatial autocorrelation measures, focusing on the basics. We
will use the Moran scatter plot and the non-parametric spatial correlogram to visualize the magnitude and the range
of spatial autocorrelation. We will continue with the Cleveland house sales data set that we used in the analysis of
distance-based spatial weights.
Objectives

Visualize Moran’s I by means of the Moran scatter plot
Carry out inference using the permutation approach
Make analyses reproducible using the random seed setting
Nonlinear LOWESS smooth of the Moran scatter plot
Brush Moran scatter plot to assess regional Moran’s I
Appreciate the difference between dynamic weights and static weights in Moran scatter plot regime regression
Analyze the range of spatial autocorrelation by means of a spatial correlogram
Address the sensitivity of the spatial correlogram to the choice of maximum distance and number of bins
Address the computation of the spatial correlogram for large(r) data sets by relying on random sampling

https://geodacenter.github.io/index.html
https://geodacenter.github.io/download.html
https://github.com/GeoDaCenter/geoda/
https://spatial.uchicago.edu/sample-data
https://geodacenter.github.io/documentation.html
https://geodacenter.github.io/support.html
https://geodacenter.github.io/index-cn.html
https://geodacenter.github.io/data-and-lab//clev_sls_154_core/
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GeoDa functions covered
Space > Univariate Moran’s I

permutation inference
setting the random seed
LOWESS smoother of the Moran scatter plot
brushing the Moran scatter plot
save results (standardized value and spatial lag)

Space > Spatial Correlogram
variable selection
selecting the number of bins
selecting the maximum distance
using a random sample of locations
changing the smoothing parameters

Getting started
With GeoDa launched and all previous projects closed, we load the project file for the Cleveland house price data,
clev_sls_154_core.gda. This should bring up the by now familiar themeless point map for the house sales locations
shown in Figure 1.

Figure 1: Cleveland sales themeless map
With the project file in place, the weights manager will contain all four weights that were created previously. The
queen contiguity weights (from the Thiessen polygons) should be selected, as shown in Figure 2.2
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Figure 2: Weights manager contents
We will use this weights file in the spatial autocorrelation analysis that follows.
The Moran Scatter PLot
Concept
Moran’s I
Moran’s I statistic is arguably the most commonly used indicator of global spatial autocorrelation. It was initially
suggested by Moran (1948), and popularized through the classic work on spatial autocorrelation by Cliff and Ord
(1973). In essence, it is a cross-product statistic between a variable and its spatial lag, with the variable expressed in
deviations from its mean. For an observation at location , this is expressed as , where  is the mean
of variable .
Moran’s I statistic is then:

with  as the elements of the spatial weights matrix,  as the sum of all the weights, and  as
the number of observations.
Permutation inference
Inference for Moran’s I is based on a null hypothesis of spatial randomness. The distribution of the statistic under
the null can be derived using either an assumption of normality (independent normal random variates), or so-called
randomization (i.e., each value is equally likely to occur at any location).3
An alternative to an analytical derivation is a computational approach based on permutation. This calculates a
reference distribution for the statistic under the null hypothesis of spatial randomness by randomly permuting the
observed values over the locations. The statistic is computed for each of these randomly reshuffled data sets, which
yields a reference distribution.
This distribution is then used to calculate a so-called pseudo p-value. This is found as
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where  is the number of times the computed Moran’s I from the spatial random data sets (the permuted data sets)
is equal to or more extreme than the observed statistic.  equals the number of permutations. The latter is typically
taken as 99, 999, etc., to yield nicely rounded pseudo p-values.
The pseudo p-value is only a summary of the results from the reference distribution and should not be interpreted as
an analytical p-value. Most importantly, it should be kept in mind that the extent of significance is determined in
part by the number of random pemutations. More precisely, a result that has a p-value of 0.01 with 99 permutations
is not necessarily more significant than a result with a p-value of 0.001 with 999 permutations.
Moran scatter plot
The Moran scatter plot, first outlined in Anselin (1996), consists of a plot with the spatially lagged variable on the
y-axis and the original variable on the x-axis. The slope of the linear fit to the scatter plot equals Moran’s I.
We consider a variable , given in deviations from the mean. With row-standardized weights, the sum of all the
weights ( ) equals the number of obsevations ( ). As a result, the expression for Moran’s I simplifies to:

Upon closer examination, this turns out to be the slope of a regression of  on .4 This is the principle
underlying the Moran scatter plot.
An important aspect of the visualization in the Moran scatter plot is the classification of the nature of spatial
autocorrelation into four categories. Since the plot is centered on the mean (of zero), all points to the right of the
mean have  and all points to the left have . We refer to these values respectively as high and low, in
the limited sense of higher or lower than average. Similarly, we can classify the values for the spatial lag above and
below the mean as high and low.
The scatter plot is then easily decomposed into four quadrants. The upper-right quadrant and the lower-left
quadrant correspond with positive spatial autocorrelation (similar values at neighboring locations). We refer to
them as respectively high-high and low-low spatial autocorrelation. In contrast, the lower-right and upper-left
quadrant correspond to negative spatial autocorrelation (dissimilar values at neighboring locations). We refer to
them as respectively high-low and low-high spatial autocorrelation.
The classification of the spatial autocorrelation into four types begins to make the connection between global and
local spatial autocorrelation. However, it is important to keep in mind that the classification as such does not imply
significance. This is further explored in our discussion of local indicators of spatial association (LISA).
Creating a Moran scatter plot
To start the Moran scatter plot, we select the left-most button in the spatial analysis group on the toolbar, as shown
in Figure 3.

Figure 3: Moran scatter plot toolbar icon
After selecting the toolbar icon, the next prompt is for the type of analysis. For now, we will stick to the Univariate
Moran’s I option, first in the list shown in Figure 4.

Figure 4: Univariate Moran’s I
Alternatively, we can choose Space > Univariate Moran’s I from the menu, listed in Figure 5.
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Figure 5: Moran scatter plot from menu
After the univariate Moran’s I analysis is initiated, the next prompt is for the variable name, to be selected from the
Variable Settings dialog. In our example, we take sale_price. In the dialog, the Weights drop down list shows the
currently active weights. As illustrated in Figure 6, in our example, this should be clev_sls_154_core_q.

Figure 6: Moran’s I variable selection
Clicking OK brings up the Moran scatter plot, shown in Figure 7.
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Figure 7: Moran scatter plot
Interpretation
In the Moran scatter plot in Figure 7, the points in the graph are a bit lopsided, because it is rendered as a square
(the preferred approach when both axes are measured in the same units, to avoid distorting the data). The house
prices are on the horizontal axis, and their spatially lagged counterparts on the vertical axis. Note that the house
price values have been standardized, and are given in standard deviational units (the mean is zero and the standard
deviation is one). Similarly, the spatial lag is computed for those standardized values.
In its default setting, the plot shows a linear fit through the point cloud. The slope of this line corresponds to
Moran’s I, and its value (0.282336) is listed at the top of the graph.
We can see that the shape of the point cloud is determined by the presence of several outliers on the high end (e.g.,
larger than three standard deviational units from the mean). One observation, with a sales price of $527,409
(compared to the median sales prices of $20,000), is as large as 8 standard deviational units above the mean. On the
lower end of the spectrum (to the left of the dashed line in the middle that represents the mean), there is much less
spread in the house prices, and those points end up bunched together. By eliminating some of the outliers, one may
be able to see more detail for the remaining observations, but we will not pursue that here.
Finally, we can select points in each of the quadrants (highlighted by the dashed lines) and identify locations in the
map (or, in any other open view) associated with each of the four types of spatial autocorrelation.
Assessing significance
As such, the slope of the linear fit only provides an estimate of Moran’s I, but it does not reveal any information
about the significance of the test statistic. This is obtained by means of the Randomization option. The full list of
options is generated by right clicking (or, control clicking) on the plot, in the usual fashion. This yields the list
shown in Figure 8. We select Randomization and the number of permutations in the side panel. This value
corresponds to the  in the expression for the pseudo p-value given above.
In our example, as shown in Figure 8, we select 999 Permutations, which is typically sufficient for reliable
inference. The most extreme pseudo p-value possible under this scenario is 0.001, which means that none of the
permuted data sets yielded a statistic larger than the one observed in the actual data.

M
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Figure 8: Randomization inference
Reference distribution
The result of the permutation operation is a reference distribution for the statistic, depicted as a histogram, as in
Figure 9. The green line shows the value of the statistic for the actual data, placed at 0.2823 in our example, well to
the right of the reference distribution. This suggests a strong rejection of the null hypothesis.

Figure 9: Reference distribution for Moran’s I
The graph contains several summary statistics. In the top left are shown the number of permutations used to
construct the reference distribution (999) and the associated pseudo p-value. As mentioned, the latter is the ratio of
the number of values for the statistic that are equal to or greater than the observed value (in our example, just 1 for
the observed statistic itself) to the number of generated samples (999) + 1 (for the actual sample). Hence, the result
is 1/(999+1) = 0.001.
As pointed out earlier, this is also the smallest (most extreme) p-value that can be obtained. It is important to keep
this in mind when comparing results where a different number of permutations is used. For example, a pseudo p-
value of 0.001 for 999 permutations is not necessarily more significant than a pseudo p-value of 0.01 for 99
permutations. In both cases, not a single statistic computed from the randomly generated samples exceeded the
actual statistic. This contrasts with the usual interpretation of an analytically derived p-value.
In the status bar at the bottom of the graph appear several descriptive measures of the Moran’s I statistic. First is the
actually observed value, I = 0.2823. Next follows the theoretical expected value, E[I], which equals -1/(n-1). The
value of -0.0049 is indeed -1 / 204 (there are 205 observations in the data set). The mean is the average of the
reference distribution. In our example, this result is -0.0071, slightly off from the theoretically expected value. The
standard deviation of the reference distribution is 0.0372, compared to a theoretical value of 0.00158 under an
analytical randomization approach (not computed in GeoDa).
These summary statistics illustrate a common feature in empirical work, namely that the theoretical indication of
precision may be overly optimistic (the standard deviation is smaller in the analytical derivation). The z-value that
corresponds to the computed Moran’s I, its empirical mean and standard deviation is 7.7721 (the last item to the
right on the status bar). Even though a normal approximation would not be accurate, the z-value does suggest
strong rejection of the null hypothesis.
Clicking on the Run button in Figure 9 will generate a new empirical distribution. This allows for a sensitivity
analysis of the results. Especially when only 99 permutations are used, the summary statistics may vary somewhat,
but for 999 (and definitely for 99999, the largest possible value), they should be pretty stable.
Replicability - the random seed
In order to facilitate replication, the default setting in GeoDa is to use a specified seed for the random number
generator. This is evidenced by the check mark next to Use Specified Seed in the options listed in Figure 8. The
default seed value used is shown when selecting the Specify Seed … box, where it also can be changed.
The random seed can also be set globally in the GeoDa Preferences, under the System tab, as shown in Figure 10.
At the bottom of the dialog, under the item Method:, the box for using the specified seed is checked by default, and
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the value 123456789 is used as the default seed. This can be changed by typing in a different value.
The same random seed is used in all operations in GeoDa that rely on some type of random permutations (i.e., all
flavors of the Moran scatter plot, and all the local spatial autocorrelation statistics). This ensures that the results will
be identical for each analysis that uses the same sequence of random numbers.

Figure 10: Random seed in GeoDa preferences
Using the same random seed ensures replicability on a particular machine. However, due to the way the random
number generator is implemented, there may be differences depending on the hardware, specifically when a
different number of CPU cores is used.5 In order to control for any such discrepancies, it is possible to manually set
the number of CPU cores. For example, in Figure 10, the box next to Set number of CPU cores manually is
checked, and the number of cores is given as 8.6

Moran scatter plot options
In the usual way, a right click in the plot brings up the available options, shown earlier in Figure 8.
Many of these are by now familiar. We have already discussed the Randomization option. We next briefly consider
Save Results and View.
Saving scatter plot variables
When selecting the Save Results option, the dialog offers suggested variable names for the standardized variable
(recall that the variable specified was sale_price, not its standardized version), with default name MORAN_STD,
and for its spatial lag, with default name MORAN_LAG. This is illustrated in Figure 11. A click on OK will add
these two variables to the data table.

Figure 11: Saving variables from Moran scatter plot
We can quickly verify the results by using the Table > Calculator option to compute a standardized version of
sale_price and its spatial lag. For the former, we use the Univariate tab and the STANDARDIZED (Z) operator
(we first add M_ST as a new variable), as shown in Figure 12.7
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Figure 12: Standardized variable in calculator
For the spatial lag, we use the Spatial Lag tab, with the weights file clev_sls_154_core_q specified and the
previously standardized variable (again, after adding M_LAG as the new variable), as in Figure 13.

Figure 13: Spatially lagged variable in calculator
The table now has four extra columns, two generated by the Moran scatter plot option, and two calculated explicitly
to replicate these results, shown in Figure 14.

Figure 14: Variables added to table
Digression - creating a Moran scatter plot as a standard scatter plot
The preferred way to construct a Moran scatter plot is to use the designated functionality in the Space menu.
However, it is perfectly possible to create a plot the hard way, as a special case of a standard bivariate scatter plot.
To accomplish this, we select a variable (standardized) for the x-axis, and its spatial lag for the y-axis.
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For example, in Figure 15, we select the just created MORAN_STD in the variable selection dialog for the x-axis,
and its spatial lag MORAN_LAG as the y-axis (or, alternatively, M_ST and M_LAG).

Figure 15: Scatter plot with spatial variables
This yields the standard scatter plot, shown in Figure 16. In contrast to the specific Moran scatter plot, here the
statistics are displayed below the plot (the default setting for a standard scatter plot). This reveals the slope of the
linear fit to be 0.282, the same as Moran’s I given by the Moran scatter plot.

Figure 16: Moran as a standard scatter plot
We will revisit the plot in Figure 16 later when we consider the difference between regime regression in the Moran
scatter plot compared to the standard scatter plot.
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Apart from a purely pedagogic objective, there are some instances in practice when constructing a Moran scatter
plot as a standard plot is the only way to obtain an estimate for Moran’s I (as the slope of the linear fit). One
example we already encountered is when we use row-standardized weights derived from an inverse distance
measure. Such weights can be employed to create a spatially lagged variable in the usual way, which can then serve
as the y-axis in the scatter plot.
The current implementation of the Moran scatter plot functionality in GeoDa ignores the specific values for the
weights and only takes into account the presence of connectivity (i.e., non-zero weights). In the computation of the
spatial lag, all the neighbors receive the same weight. However, for row-standardized inverse distance weights, the
values will be different. Since the weights are row-standardized, the slope of a standard scatter plot of the spatial
lag against the variable will still be Moran’s I.
Note that this approach does not work for inverse distance weights that are not row-standardized, or for weights
that include the diagonal element. In the former case, the slope estimate is off by a factor . So, in order to
recuperate the value for Moran’s I, the slope estimate would have to be multiplied by . However, the
interpretation of Moran’s I for spatial weights that are not row-standardized may be difficult.
In any case, the slope of the linear fit in a standard scatter plot is only an estimate for Moran’s I, but does not
provide any inference. The usual standard errors and t-statistics provided in the scatter plot are not appropriate in
the spatial case. An explicity permutation procedure would need to be carried out separately.
LOWESS smoother
In addition to the traditional linear smoother, GeoDa also supports a Lowess smoother for the Moran scatter plot
(similar to the functionality in the standard scatter plot). This is accomplished by selecting the View > LOWESS
Smoother item in the options menu, illustrated in Figure 17.

Figure 17: Moran scatter plot LOWESS option
With the View > Linear Smoother option turned off, only the nonlinear fit from the local regression is shown on
the Moran scatter plot, as in Figure 18. The Lowess smoother can be explored to identify potential structural breaks
in the pattern of spatial autocorrelation. For example, in some parts of the data set, the curve may be very steep and
positive, suggesting strong positive spatial autocorrelation, whereas in other parts, it could be flat, indicating no
autocorrelation.

/nS0
n/S0
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Figure 18: LOWESS smooth of Moran scatter plot
The local smoother is fit through the points in the Moran scatter plot by utilizing only those observations within a
given bandwidth. As for the standard scatter plot, the default is to use 0.20 of the range of values. The bandwidth
(as well as other, more technical parameters) can be specified by selecting the View > Edit LOWESS Parameters
item in the options menu, as we have seen in the discussion of the standard scatter plot. All options work exactly
the same as in the standard case.
Brushing the Moran scatter plot
A final option of the View setting that we consider initiates Regimes Regression. As in the standard scatter plot,
with this option selected, statistics for the slope and intercept are recomputed as observations are selected and
unselected. We proceed with the LOWESS Smoother turned off and the Regimes Regression selected, as in
Figure 19.

Figure 19: Moran scatter plot regimes
This brings up the initial setting for the brushing operation. As illustrated in Figure 20, there are now three Moran
scatter plots. The one to the left (in red) is for the selected observations, currently empty, since no selection has
been made. The one to the right is for the complement, referred to as unselected (in black), currently the same as
the scatter plot in the center, which shows the slope for all observations.
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Figure 20: Regimes starting setup
We start the brushing operation by selecting a large rectangle with 51 observations (the number of selected
observations is shown in the status bar) in the lower right of the point map, shown in the left panel of Figure 21. As
soon as the selection is made, the red and black graphs are updated in the right panel of the Figure.

Figure 21: Brushing the Moran scatter plot - 1
The distinguishing characteristics of this brushing operation (or, any selection) is that the spatial weights are
dynamically updated for both the selection and the unselected observations. In other words, the edge effects are
corrected for and no links are included to locations that are not part of the selection. The same holds for the
unselected observations.
As a result, the slope of the Moran scatter plots on the left and the right are as if the data set consisted only of the
selected/unselected points. This is a visual implementation of a regionalized Moran’s I, where the indicator of
spatial autocorrelation is calculated for a subset of the observations (Munasinghe and Morris 1996).
In our initial selection, the selected observations show no spatial autocorrelation at all (a value of 0.0257), whereas
the complement (unselected) obtain a Moran’s I of 0.2801, basically the same as the overall statistic of 0.282. This
would suggest the presence of spatial heterogeneity in the strength of the spatial autocorrelation, in the sense that
the subset selected shows a very different degree of dependence than its complement (or the data set as a whole).
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Note that this is purely exploratory, and there is no actual test for the difference between the two statistics (this
contrasts with the availability of the Chow test in the standard scatter plot).
As we move the brush to the left in the point map, the selected and unselected scatter plots are updated in real time,
showing the corresponding regional Moran’s I statistics in the panels of Figure 22.

Figure 22: Brushing the Moran scatter plot - 2
In our example, the second selection shows much less evidence of spatial heterogeneity, with a Moran’s I of 0.2888
for the selected observations and 0.2977 for the complement, as shown in the Figure.
Of course, because of the linking of all graphs in GeoDa, the selection is also reflected in the standard scatter plot
we constructed for the standardized price variable and its spatial lag.
The difference between this and the Moran scatter plot brushing pertains to the dynamically updated spatial
weights. In the standard scatter plot, the spatially lagged variable is included in the selection as is, which also
includes neighbors that are not part of the selection. This contrasts to the selection in the Moran scatter plot, which
dynamically updates the spatial weights for both the selected and unselected.
The difference is highlighted in Figure 23.
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Figure 23: Brushing the standard scatter plot
The scatter plot with the same 51 selected observations as in the first example above yields a slope of 0.170 for the
selected (in red, contrasted with 0.026 above) and 0.272 for the unselected (in blue, compared with 0.280 above).
The usual Chow test does not provide strong evidence for spatial heterogeneity.
This result needs to be interpreted with caution, since the weights structure has not been adjusted to reflect the
actual breaks within the data set. On the other hand, the standard scatter plot ignores boundary effects (in the sense
that it includes neighbors outside the regimes), so in some contexts, this may be the interpretation sought. GeoDa
provides both options.
Spatial Correlogram
Concept
A non-parametric spatial correlogram is an alternative measure of global spatial autocorrelation that does not rely
on the specification of a spatial weights matrix. Instead, a local regression is fit to the covariances or correlations
computed for all pairs of observations as a function of the distance between them (for example, as outlined in
Bjornstad and Falck 2001).8
With standardized variables , this boils down to a local regression:

where  is the distance between a pair of locations , u is an error term, and  is the non-parametric function
to be determined from the data. Typically, the latter is a LOWESS or kernel regression.

z

. = f ( ) + u,zi zj dij
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GeoDa implements a spatial correlogram, i.e., the computation is based on standardized variables such that the
cross-products correspond to correlations. The nonlinear curve is a LOWESS regression fit to the average
correlation for all pairs of observations in a distance bin. This uses a similar logic as underlying the empirical
variogram of geostatistics, but with a non-linear smoother applied to the bin estimates.
Creating a spatial correlogram
The spatial correlogram functionality is invoked by clicking on the corresponding icon in the toolbar (the middle
icon in the spatial analysis group, as in Figure 24), or by selecting Space > Spatial Correlogram from the menu
(the item at the very bottom of the list of options).

Figure 24: Non-parametric correlogram icon
This brings up a dialog with the default parameter settings and a graph in the background, as shown in Figure 25.
This graph is not informative at this point, since it shows a correlogram for the first variable, which is unique_id.
First, we need to choose the proper settings in the dialog.

Figure 25: Initial correlogram dialog
The items at the top of the dialog are the Variable (available from a drop down list), the Distance metric (default is
Euclidean, but Arc distance is also available), and the Number of Bins.
The non-parametric correlogram is computed by means of a local regression on the pairwise correlations that fall
within a distance bin. The number of bins determines the distance range of each bin. This range is the maximum
distance divided by the number of bins. The more bins are chosen, the more fine-grained the correlogram will be.
However, this also potentially can lead to too few pairs in some bins (the rule of thumb is to have at least 30).
The number of elements in each bin is a result of the interplay between the number of bins and the maximum
distance. As the default, all pairs are used (in our example, with 205 observations, this yields: 

 pairs), and thus all the pairwise distances are taken into account. However, in many
instances in practice, this may not be a good choice. For example, when there are many observations, the number of
pairs quickly becomes unwieldy and GeoDa will run out of memory. Also, the correlations computed for pairs that
are far apart are not that meaningful (they should be zero due to Tobler’s law). The bottom half of the dialog
provides options for fine-tuning these choices.
First, we consider the default, which uses all pairs and does not impose any constraints in terms of maximum
distance. The number of bins is set to 10. As before, the Variable we analyze is sale_price. These selections are
shown in the dialog in Figure 26.

[ − 205]/2 = 209102052
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Figure 26: Variable setting for correlogram
Clicking the Apply button yields the spatial correlogram shown in Figure 27. Slight adjustments to the size of the
window may be necessary in order to see all the detail on the horizontal axis, especially since the distances are
expressed in feet (so they are large numbers).

Figure 27: Default spatial correlogram
Interpretation
At the top of the graph in Figure 27 is the actual correlogram, depicting how the spatial autocorrelation changes
with distance. Hovering the pointer over each blue dot, gives the spatial autocorrelation associated with that
distance band in the status bar. In our example, the first dot corresponds to 0.202048 for distances between 0 and
4823 feet (or about 0.9 miles).
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The intersection between the correlogram and the dashed zero axis (which determines the range of spatial
autocorrelation) happens in the midpoint of the second range (4823 to 9647 feet), i.e., 7235, or roughly around 1.4
miles. Beyond that range, the autocorrelation is first negative and then fluctuates around the zero line.
At the bottom of the graph is a histogram that shows the number of pairs of observations in each bin. Hovering the
pointer over a given bin shows how many pairs are contained in the bin in the status bar. In our example, each bin
clearly has more than sufficient observation pairs. Even the last bin, which seems small (a function of the vertical
scale), uses 75 pairs for the computation.
Further detail is provided when selecting the Display Statistics option (right click on the graph). As shown in
Figure 28, for each bin, the computed autocorrelation is provided, as well as the distance range for the bin (lower
and upper bound), and the number of pairs used to compute the statistic.
In addition, there is a summary with the minimum and maximum distance, the total number of pairs, and an
estimate for the range (i.e., the distance at which the estimated autocorrelation first becomes zero). In our example,
the latter is estimated to be about 7,225 feet (about 1.4 miles). Right after the listing of the value for the range, the
lower and upper bound of the bin where the correlogram crosses the axis is given (this provides an alternative, but
less precise approximation of the range).

Figure 28: Spatial correlogram with statistics

Spatial correlogram options
In GeoDa, there are two sets of spatial correlogram options. One consists of the parameters of the model, as
specified in the dialog shown in Figure 26. The other set of options are invoked in the usual way, by right clicking
on the graph. We already referred to the Display Statistics option above. The full list of options is shown in Figure
29.
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Figure 29: Spatial correlogram options
One interesting option is to Save Results. This provides a record of the descriptive statistics of the correlogram in a
text file (with file extension csv). The file contains the information listed at the bottom of the graph when Display
Statistics has been selected. This includes the estimates of the spatial autocorrelation, bin ranges, number of
observations in the bins and the summary items.
LOWESS parameters
The selection highlighted in Figure 29 pertains to the LOWESS Parameters, i.e., the bandwidth and other
technical options that can be specified for any LOWESS smoother. The default is to use a bandwidth of 0.20, which
works well in most situations. As usual, a larger bandwidth will yield a (slightly) smoother curve, and a smaller
bandwidth the opposite. This works in exactly the same way as for the standard LOWESS nonlinear smoother.
Distance settings
In most situations, the default use of all the distance pairs is too overwhelming. Also, there is a good reason to limit
the maximum distance, since correlations at large(r) distances are both sparser (fewer pairs in a bin, which leads to
less precise estimates) and supposed to be near zero (Tobler’s law).
There are several rules of thumb to set the maximum distance. GeoDa uses half of the maximum distance as a point
of departure. By checking the box next to Max Distance and clicking on the button in the middle of the slider bar,
half the maximum distance (24131.4) is listed in the box, shown in Figure 30. This reduces the number of pairs
used to compute the correlations almost by half, from 20910 to roughly 10557.9

Figure 30: Adjusting maximum distance
The corresponding correlogram in Figure 31 emphasizes the autocorrelation pattern over the shorter distance
ranges. It suggests a range for the correlation that is basically the same as the initial result, about 7,244 feet
(compared to 7,225). The status bar lists the autocorrelation given by the point over which the pointer hovers (in
our example, about -0.056 for the fourth bin).
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Figure 31: Correlogram with half max distance
In order to get an even more precise measure of the range, we can specify the maximum distance as 20000 feet (3.8
miles) by typing this value into the bin, and select 20 bins (there are plenty of observations, so there is no danger of
having fewer than 30 pairs in any bin).
The resulting correlogram, shown in Figure 32, has a distance range for each bin of 1000 feet (about 0.2 miles).
This provides a much finer grained measure of the range of spatial autocorrelation (this may require some
expansion of the window to clearly see all the values on the horizontal axis and the displayed statistics).
The intersection between the correlogram and the zero axis is almost exactly in the middle of the 6000-7000 foot
range, about 6775 feet (or 1.3 miles). In sum, by changing the correlogram parameters from the default to a much
smaller value and increasing the number of bins, the estimate of our range of spatial interaction goes from about
7200 feet to about 6800 feet. This highlights the importance of sensitivity analysis and going beyond the default
values.
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Figure 32: Custom distance and bins
Large(r) data issues – random sampling
A final feature of the correlogram in GeoDa is the ability to compute the spatial correlations for a sample of
locations, which reduces the number of pairs used in the calculations. This is especially useful when the data set is
large, in which case the number of pairs could quickly become prohibitive.
In our example, this is not really necessary, since the default sample size of 1,000,000 that is used to generate the
random sample exceeds the current total number of pairs in the actual data. Nevertheless, to illustrate the process,
we go back and use 20000 for the maximum distance, with 10 bins, and check the Random Sample radio button,
with 10000 for the sample size, as in Figure 33. To allow exact replication, we make sure that the Use specified
seed option is checked.
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Figure 33: Randomly sampled observation pairs
In our example, the correlogram that results from the sampled observation pairs is not that different from the
default case. As demonstrated in Figure 34, the first correlation is higher, at 0.513, but the range is again roughly
7000 feet. In general, the sampling approximation is quite good, as long as the selected sample size is not too small
relative to the original data size.

Figure 34: Correlogram for random observation pairs
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If the project was started without the right project file, then at the very least, the queen contiguity weights need to
be created that are based on the Thiessen polygons (previously clev_sls_154_core_q).↩
See Cliff and Ord (1973) or Cliff and Ord (1981) for an extensive technical discussion.↩
In a bivariate linear regression , the least squares estimate for  is . In the
Moran scatter plot, the role of y is taken by the spatial lag .↩
The implementation of the random numbers in GeoDa takes advantage of multi-threading, a built-in form of
parallel computing.↩
This is the number of software multithreading cores, typically twice the number of physical cores (the example
shown is on a machine with 4 CPU hardware cores, which yield 8 multi-threading cores, the number listed).↩
The STANDARDIZED (Z) option is the usual standardization, based on subtracting the mean and dividing by the
standard deviation. The Calculator also contains an alternative, based on the standardized mean absolute deviation,
STANDARDIZED (MAD). This operation is not used in the Moran scatter plot.↩
See also Hall and Patil (1994) for a technical discussion of the general principle.↩
Since the estimated number of pairs is computed on the fly, as the maximum distance is adjusted by means of the
slider, it is only an approximation. The actual number of pairs used in the calcuation of the pairwise correlations is
given in the status bar of the correlogram.↩
GeoDa is maintained by lixun910. This page was generated by GitHub Pages using the Cayman theme by Jason
Long.
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