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Fitting Constrained Poisson Regression Models 
to Interurban Migration Elows 

This paper demonstrates the effects of fitting singly and doubly constrained spatial 
interaction models using the Poisson regression approach. A large data set containing 
migration frows between labor market areus in Great Britain in 1970-71 is used. 
The results of fitting unconstrained, singly constrained, and doubly constrained 
models are compared with respect to goodness of fit and the interpretability of 
parameter estimates. The addition of other explanatmy variables to the model is 
also explored. 

1. INTRODUCTION 

During the last thirty years there has been much research effort devoted to 
modeling interaction between spatially defined units, especially with respect to 
such topics as migration, commodity flows, journeys to work, and shopping trips. 
There have been two main approaches to spatial interaction modeling, one based 
on statistical estimation of flows as a function of various explanatory variables, 
u s d y  including measures of distance and origin and destination zone size, and 
one based on a mathematical algorithm that produces the most likely set of flows 
given various constraints on origin and destination totals. The former is closely 
based on the Newtonian gravity model, and derives from the work of Stewart 
(1948) and Olsson (1965), while the latter is particularly associated with the work 
of Wilson (1970), who justified it in terms of entropy maximization. As usually 
employed, the former has the problem of giving rather poor fits to observed flows 
(see Senior 1979), while the latter has the problem of being relatively hard to adapt 
to incorporate additional explanatory variables. 

Flowerdew and Aitkin (1982) argued that the problems of the regression 
approach to spatial interaction modeling stemmed from an incorrect specification 
of the model employed; if the dependent variable is a count-the number of trips, 
migrants, shipments, etc.-a form of regression should be employed based on a 
discrete distribution such as the Poisson rather than on the normal distribution as 
in ordinary-least-squares regression. Poisson regression can be carried out 
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conveniently within the generalized linear modeling framework using the widely 
available package GLIM, and Flowerdew and Aitkin were able to show the 
superiority of Poisson regression for modeling interurban migration over 
conventional regression models. 

Baxter (1982) has shown the similarities between different approaches to spatial 
interaction modeling, in particular indicating the equivalence of entropy-maximizing 
models without origin and destination constraints to Poisson regression models 
using origin total, destination total, and distance as explanatory variables. The 
parameter estimates derived from the entropy-maximizing approach have maximum 
likelihood properties and are the same as those derived from a Poisson regression 
model with the same explanatory variables. Given this equivalence, Poisson 
regression has the advantages that the statistical properties of the model, including 
its goodness of fit, are made clear, and that different or additional explanatory 
variables can easily be fitted. 

The equivalence between Poisson regression and entropy-maximizing models still 
applies where origin and/or destination constraints are employed. Baxter (1984) 
has indicated how constrained spatial interaction models can be fitted using a 
Poisson regression approach. In this paper we apply his approach to the interurban 
migration data studied by Flowerdew and Aitkin (1982), investigating the 
effectiveness of origin and destination constraints on goodness of fit and on the 
interpretability of the model. After a discussion of the method and an introduction 
to the data, the results of fitting unconstrained and constrained models are 
reported, together with some additional models. Finally the utility of the approach 
is assessed. 

2. POISSON REGRESSION ANALYSIS 

Several introductions to Poisson regression analysis are now available, including 
Flowerdew and Aitkin (1982), Lovett (1984), and Lovett, Whyte, and Whyte 
(1985), so only a brief discussion will be supplied here. The main characteristics of 
Poisson regression can be most easily described by referring to the concept of a 
generalized linear model (Nelder and Wedderburn 1972), where the observed 
values of the response variable yi are regarded as values taken on by a random 
variable Yi,  whose mean pi  is linked to a linear combination of explanatory 
variables. Ordinary-least-squares regression is a model in which the random variable 
Yi is normally distributed and its mean pi  is equal to a linear combination of the 
explanatory variables. In Poisson regression, Yi is assumed to have a Poisson 
distribution whose parameter is logarithmically linked to a linear combination of 
the explanatory variables. Other models, including the binomial logit, can also be 
fitted. 

The GLIM package (Payne 1985) will fit a Poisson regression model to a set of 
data, generating a set of coefficients for the explanatory variables and a predicted 
value for each case in the data set. It uses an iteratively reweighted least-squares 
procedure which, as McCullagh and Nelder (1983) prove, converges to the 
maximum likelihood solution. The goodness of fit of generalized linear models is 
assessed on the basis of the log-likelihood ratio statistic, known as the deviance. In 
ordinary-least-squares regression, this quantity reduces to the residual sum of 
squares, but this is not true in the Poisson case. Because the Poisson distribution 
has only one parameter (its mean being equal to its variance), it is possible to test 
whether the value of the deviance is compatible with the model that has been fitted 
-in other words, whether the model could have generated the data. The deviance 
has a distribution approximating to chi-squared with degrees of freedom equal to 
the number of observations minus the number of parameters fitted (see Payne 
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1985, p. 111, for comments on the quality of the approximation). This property 
does not hold for tweparameter distributions, including the normal and the 
negative binomial, where a high deviance value could arise from misspecification or 
merely from a large standard error. For the Poisson, however, a high deviance can 
only arise from misspecification. 

GLIM allows for any combination of interval and nominal variables to be used as 
explanatory variables. Nominal variables are known as factors and adding a factor 
to a model results in the estimation of a separate parameter for each value of the 
factor. A special case of Poisson regression is encountered if all explanatory 
variables are factors; in this situation Poisson regression is equivalent to log-linear 
modeling of contingency tables and Bowlby and Silk (1982) have demonstrated 
how GLIM can be used to carry out such analyses. Baxter (1984) shows that fitting 
an origin-constrained spatial interaction model is equivalent to fitting a factor in a 
Poisson regression model, where the factor has a different value for each origin 
zone. Adding this factor to the analysis will result in predicted flows satisfying the 
origin constraint and in origin-specific coefficients equivalent to the weights 
produced by an origin-constrained entropy-maximizing model. As Baxter indicates, 
this can be combined in a Poisson regression model with any other variables 
thought appropriate. A destination-constrained model can be fitted in an analogous 
manner, and a doubly constrained model by fitting two factors, one representing 
origins and one representing destinations. 

3. THE DATA SET 

The models described are fitted to census data indicating the number of 
interurban migrants in 1970-71, i.e., people whose 1971 address was in a different 
standard metropolitan labor area (SMLA) from their 1970 address. SMLAs were 
defined on the basis of commuter flows in an attempt to approximate as far as 
possible geographical labor market areas (Drewett et al. 1974), and they differ 
greatly in both area and population. In 1971 there were 126 SMLAs in Great 
Britain, and hence a set of 15,750 inter-SMLA flows was identified. Flowerdew and 
Salt (1979) discuss the data set in more detail. In addition to the number of 
migrants, population size, distance, and several spatial and socioeconomic variables 
were available as possible explanatory variables. 

Besides the element of convenience, there are two main reasons for using t h i s  
data set to fit the models discussed above. First, it is possible to compare the results 
of the analysis with those obtained in earlier studies (Flowerdew and Aitkin 1982; 
Flowerdew 1982). Second, with such a large data set it should be relatively easy to 
discriminate between the goodness of fit of different models. 

4. RESULTS 

In this section, the results of fitting spatial interaction models of various types to 
the data are described. The unconstrained model, being the simplest, is described 
first, with an explanation of the results and a discussion of the effects of including 
several additional variables, representing contiguity, unemployment, and the 
location of naval bases (which appear to have generated large numbers of migratory 
moves). 
Unconstrained Models 

Fitting an unconstrained model is equivalent to a Poisson regression analysis of 
the number of migrants using origin and destination size and distance as explanatory 
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variables. The results of this analysis are given in Flowerdew and Aitkin (1982), 
where they are fully discussed, but they will be recapitulated here to aid comparison 
with the constrained models discussed below. The regression equation estimates 
the parameter of the Poisson distribution (G), of which the observed migration 
flow ( yi j )  is a realization. Using the logarithms of origin and destination populations 
(ln Pi and In P j )  and the logarithm of distance on d i j )  as explanatory variables, the 
following equation was produced: 

= exp( - 14.94 + 0.954 l n P i  + 0.804 lnPj - 1.134 lndi i )  (1) 
(0.049) (0.002) (0.002) (0.004 

Standard errors are given in parentheses under the coefficients to which they refer. 
Values of 1.0 for the coefficients of ln Pi and ln Pj would indicate that migration is 
proportional to population size. All the coefficient values seem reasonably easy to 
interpret, and all are in accord with traditional gravity model theory. It may be 
noted that a model using distance rather than the logarithm of distance (equivalent 
to a negative exponential distance function) gave a considerably worse fit (deviance 
of 106,600) and this specification was not pursued further. 

As stated above, the standard method for assessing the goodness of fit of a 
Poisson regression model is through the use of the deviance statistic; if the Poisson 
assumption is correct and the model correctly formulated, the deviance should have 
an approximate chi-squared distribution with 15,746 degrees of freedom (the 
number of observations minus four, the number of parameters fitted). This means 
that the calculated chi-squared value should be less than 16,075 for the model fitted 
to avoid rejection at the 0.05 significance level. In this case, the deviance value for 
model (1) was 77,190; clearly this model is a long way from being a satisfactory fit. 
On the other hand, the deviance of the null model (obtained by using the overall 
mean ij as an estimate for y i j )  is 368,800, so model (1) can be regarded as 
accounting for 79 percent of the null deviance. 

The standard errors reported for this model, and for subsequent models, are 
calculated by GLIM on the basis that the Poisson assumption is correct. The 
unsatisfactory fit may result from a failure to include all relevant explanatory 
variables or, as argued in section 5 below, from the inadequacy of the Poisson 
assumption. In the latter case, the standard errors are likely to be underestimated 
although, under certain conditions, the parameter estimates are valid. Davies and 
Guy (1987) discuss this issue and suggest how quasi-likelihood methods can be used 
to adjust the standard errors. 

Given this high deviance, the obvious objective of the spatial interaction modeler 
is to find a regression model which does fit the data to an acceptable degree, or at 
least represents a significant step in this direction. The main aim of this paper is to 
assess the results of using a constrained form of the spatial interaction model. 
Before doing this, however, the effect of adding other possible explanatory variables 
to the unconstrained version of the model will be investigated. Appropriate 
variables can be identified by inspection of the residuals. 

As shown in Table 2 of Flowerdew and Aitkin (1982), many of the largest 
residuals represent flows between contiguous SMLAs: these flows may have been 
underpredicted through the inclusion of relatively short-distance moves across a 
boundary, treated in this model as if they were between the main population 
centers of the SMLA. Again, a dummy variable can be introduced which represents 
the contiguity effect; adding this variable to model (1) produces the following 
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TABLE 1 
Summary of Models Fitted 

Model Variables Included Deviance 

1 Unconstrained I n p i , l n P j , l n d i j  77,190 
2 I n P i , l n P j , l n d i j , C i j  72,750 
3 InPi , lnPj ,Indi j ,Ci j ,Bi ,  Bj,Bij 69,800 

71,110 
4 

5 
65,250 

7 In Pj , lndi j .  B j ,  B i j ,  uj 62,990 

9 Destinationconstrained In Pi,Indi j  61,000 

11 Inpi,Indij ,Cij ,  Bi, B i j . y  56,690 

In pi, In P j ,  In d i j ,  cij, y , q, qj, 
Gi, Gj, Gij 

6 Originanstrained InPj , lndi j  64,750 

8 I n P j , I n d i j , C i j , B j ,  B i j ,U j  60,440 

10 Inp i , lnd i j ,B i ,B i j ,LT ,  60,120 

12 Doubly Constrained ln d i j  53,360 
13 Indi j ,  Cij,  Bij 50,110 

In Pi ,h  Pj , lnd i j .  Cij. Bi. Bj, Bij, 

y, q, yj, ci, cj, G’j 

Nore: See the text for definitions of variables and further explanation of the results. 

regression equation: 

= exp( - 15.54 + 0.925 In Pi + 0.784 l n P j  - 0.894 l n d i j  
(0.051) (0.002) (0.002) (0.005) 

+ 0.728 Cij) 
(0.011) 

where Cij has the value 1 if SMLAs i and j are contiguous, and 0 otherwise. This 
model has a deviance of 72,750 with 15,745 degrees of freedom (to aid comparisons, 
Table 1 shows the deviance obtained for this and all other models fitted). Clearly, 
the model is still far from satisfactory, but the deviance has been reduced by 4,440 
for the loss of 1 degree of freedom (a very significant reduction). It may be noted 
that the population coefficients are fairly similar to those in model (1) but the 
distance coefficient has been reduced substantially. This is because of the 
relationship between distance and contiguity; including the contiguity variable 
increases the effect of flows between noncontiguous SMLAs on the estimation of 
the distance parameter. 

Other large residuals include many flows involving the SMLAs of Plymouth, 
Portsmouth, and Dunfermline (which includes Rosyth). This suggests that a 
“naval-base” effect may be important. This effect can be modeled using dummy 
variables, which are treated as factors in GLIM; three dummy variables were used, 
one picking out flows that originated from a naval base, one for flows to a naval 
base, and one for flows between naval bases. Adding these three variables to model 
(2) produces a further regression equation: 

= exp( - 15.62 + 0.933 In Pi + 0.787 In Pi - 0.918 lnd i j  
(0.053) (0.002) (0.002) (0.008) 

+ 0.730 Cij + 0.797 Bi + 0.807 Bj + 0.028 B i j )  (3) 
(0.011) (0.019) (0.018) (0.008) 

where Bi has the value 1 for flows from one of the three naval bases and 0 
otherwise, Bj  has the value 1 for flows to a naval base and 0 otherwise, and Bi has 



302 / Geographical Analysis 

the value 1 only for flows between naval bases. This shows the existence of 
significant increases in migration to and from naval bases. The deviance is reduced 
to 69,800, a reduction of 2,950 from model (2) for the loss of 3 degrees of freedom. 
Again the reduction is highly significant, but the deviance value remains well in 
excess of the critical value. 

It is standard in the economic theory of migration to relate migrant flows to 
employment variables, although empirical studies of gross migration have often 
failed to find convincing evidence for such links (see Shaw 1975). Data were 
obtained from the Department of Employment on unemployment rates and 
unemployment change for local areas and adjusted to conform to SMLA units. Six 
variables were tried, all in logarithmic form: the origin unemployment rate in 1971 
(q), the destination unemployment rate in 1971 (Uj),  the difference between the 
two (qj), percentage unemployment growth 1970-71 at the origin (Gi), percentage 
growth at the destination (Gj) ,  and the difference between the two (Gi j ) .  

Adding these variables to model (1) produces the following result: 

= exp( - 14.72 + 0.933 In Pi + 0.785 In Pi - 1.159 lndii 
(o.os0) (0.002) (0.002) ( O - o W  

+ 0.010 - 0.279 Uj + 0.020 qj  - 0.790 Gi 
(o.(-)og) (o*(-)og) (0.002) (0.021) 

(0.021) (0.rn) 
- 0.938 G j  - 0.008 Gi j ) .  (4) 

The deviance is 71,110, a reduction of 6,080 from model (1) for the loss of 6 
degrees of freedom, a significant reduction, but perhaps a disappointingly small 
one considering the importance of employment considerations in migration theory. 
The effects of unemployment conditions at the destination are as might be 
expected: the coefficients are significant and negative. Origin conditions are less 
clearcut, however. The coefficient of origin unemployment is positive (i.e., there 
are more out-migrants from high unemployment areas) but is not significantly 
different from zero, and the coefficient of origin unemployment growth is significant 
and negative (areas of high unemployment growth have fewer out-migrants). The 
latter finding is in conflict with classical economic theory but is in accord with 
earlier findings (e.g., Cleave and Cordey-Hayes 1977). Again, although the sign of 
qj  is as expected, that of Gij is negative (i.e., the greater the difference in 
unemployment growth between places i and j ,  the fewer migrants from i to f). 

Adding the contiguity and naval-base variables to model (4) gives a further 
variation on the unconstrained Poisson regression model in which the deviance is 
reduced to 65,250 with 15,736 degrees of freedom-another significant reduction, 
but still a very long way from being an adequate fit. The equation is 

= exp( - 15.34 + 0.914 In Pi + 0.767 In Pi - 0.949 lndi i  
(0.064) (0.002) (0.002) (0.005) 

+ 0.681 Cij + 0.662 B, + 0.666 B, + 0.011 Bij  + 0.015 q 
(0.011) (0.020) (0.019) (0.008) (0.Ow 

(o.oo9) (0.002) (0.021) (0.021) 
- 0.252 Uj + 0.019 qj  - 0.663 Gi - 0.827 G j  
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The coefficients of V, and Bij  are not significantly different from zero in this 
model. 
Origin-constrained Models 

Using the methods outlined above, an originconstrained model was fitted to the 
data. In its basic form, t h i s  involved fitting a factor representing the 126 origins 
and variables representing destination size and distance. An originconstrained 
model assumes that the total number of out-migrants leaving each origin is fixed. 
The total arriving at each destination is not fixed, however, and is presumably 
responsive to the attractiveness of the destination. It seems more natural, therefore, 
to use In P j ,  the logarithm of destination population, as an explanatory variable, 
rather than In Dj,  the logarithm of the total number of in-migrants to place j .  
Fitting the origin factor, In Pi, and In d i j  results in a model with a deviance 
of 64,750 with 15,622 degrees of freedom, a reduction of 12,400 from model (1); 
the origin factor is responsible for 126 degrees of freedom. In this model, 82 
percent of the deviance of the null model is accounted for. 

This model is equivalent to a standard originconstrained spatial interaction 
model; a comparison of the deviance with that of the unconstrained model allows a 
quantitative assessment to be made of the effects on goodness of fit of introducing 
the constraint. As suggested earlier, it is easy within the Poisson regression 
framework to introduce new explanatory variables, and the next step is therefore to 
fit an originconstrained model introducing some of the variables discussed above 
as additional explanatory variables. 

The origin constraint fits one unique term for each origin; if it is included in a 
regression model, it will incorporate the effects of all origin-specific influences on 
migration. There is therefore no point in including variables describing the origin 
places. In view of the results of fitting the unconstrained models, the variables B j ,  
B i j ,  and Uj were included in an originconstrained model. This results in a re- 
duction of deviance by a further 1,850 to 62,990 with 15,619 degrees of freedom. 
When the contiguity variable Ci is also included, deviance is reduced to 60,440. 
Excluding the origin factor, the coefficient values fitted are as follows: 

Variable Parameter Standard Error 
In Pi 0.780 0.002 
In d i j  - 1.024 0.005 
Ci j 0.572 0.011 

0.739 0.019 
0.610 0.063 Bi 

Bi j 
- 0.176 0.008 ' i  

In addition to these coefficients, 126 values are generated representing the effects 
of each origin: these incorporate the effects of origin size, and range from positive 
values for the largest places (3.449 for London; 1.687 for Birmingham) to negative 
values for those places with the fewest out-migrants (- 2.183 for Rhondda; 
- 1.931 for Ellesmere Port). 

These origin parameters are related, but not identical, to the balancing factors 
produced by spatial interaction models of the type developed by Wilson (1970). It 
is standard to fit originconstrained models using a formula such as 

where is the estimated migration between i and j ,  A i  is an origin-specific 
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balancing factor, and Oi is the total number of out-migrants from i .  The equivalent 
formulation in Poisson regression is 

A 

I i j  = exp(Pi + &ln Dj + BJndi j )  (7) 

where pi is the origin parameter and p1 is constrained to be 1. It can be seen, 
therefore, that pi is equal to the natural logarithm of AiOi. It is not surprising, 
therefore, that the values of the origin parameters appear to be related to origin 
size. They presumably also reflect other variables affecting the number of out- 
migrants from 1 and its accessibility to the other places in the data set, but they 
cannot be identified precisely with any set of exogenously measurable variables. 
The destination parameters discussed later have an analogous relationship to the 
balancing factors B that arise in a standard destinationconstrained spatial 
interaction model; the natural logarithm of BjD. is equal to the destination 
parameter for place j derived from the Poisson model. 

Evaluation of the relative worth of the originconstrained model must take 
account of both the improvement in goodness of fit and the extra parameters that 
must be estimated. It is clear from these results that the improvement in fit is 
significant, despite the loss in degrees of freedom. Problems do arise, however, in 
interpreting the origin parameters, as in any constrained spatial interaction model. 
The main criterion in comparing the models should be the appropriateness or 
otherwise of the model: for some applications of spatial interaction modeling, such 
as journey to work, an originconstrained model is clearly appropriate; for migration, 
cases can be made either way. 
Destination-constrained Models 

In a similar fashion, a series of destinationconstrained models was fitted to the 
data, using a factor to represent destination-specific effects for all 126 SMLAs. The 
initial model also included In Pi and In d i j  as explanatory variables. It produced a 
deviance value of 61,000, 16,190 less than that of the unconstrained model (l), and 
also considerably less than that of the corresponding originconstrained model. It is 
perhaps not surprising that the destinationconstrained version should perform 
better than the originconstrained version on a model calibrated with population 
size data: certain places, such as New Towns and suburban areas, grew much faster 
than others, and so destination population is not as closely related to in-migration 
as origin population is to out-migration. 

Because the destination factor subsumes the effects of all  destination-specific 
variables, there is no point in adding other variables of this type to the model; 
however, origin-specific variables may be added. Introducing the variables Bi, Bi j  
and q produces a reduction in deviance to 60,120-in this model, the coefficient 
of Bi is not significantly different from zero. The contiguity variable reduces the 
deviance to 56,690. In this model, the coefficients of the explanatory variables are 
as follows: 

Variable Parameter Standard Error 
ln Pi 0.937 0.002 
In d i j  - 1.014 0.006 
Ci j 0.682 0.012 
Bi 0.663 0.020 

vi 0.029 0.008 
Bi j 0.004 0.008 
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Again, the coefficients of the destination factor reflect size, ranging from 2.602 
(London) and 1.142 (Birmingham) to - 2.496 (Rhondda) and - 2.190 
(Hartlepool). 
Doubly Constrained Models 

A doubly constrained model involves fitting two factors-one origin-related and 
one destination-related-together with variables concerned with the interaction of 
origin and destination. The basic form of the model involves fitting the two factors 
and a distance variable; using In d i j  produces a model with a deviance of 53,360 
with 15,498 degrees of freedom. Again, there is a highly significant reduction from 
the unconstrained model (23,830) and indeed from each of the singly constrained 
models. 

No further variables can be fitted referring to either the origin or the destination 
alone; however, the contiguity variable Ci and the naval-baseinteraction variable 
B i .  can be included. Doing so produces a model with a deviance of 50,110 on 
14496 degrees of freedom. The coefficients of the explanatory variables are 

Variable Parameter Standard Error 
In d i j  - 1.071 0.006 
Ci j 0.687 0.012 
Bij 0.609 0.064 

The coefficients of the origin factor range from 3.234 (London) and 1.624 
(Manchester) to - 2.155 (Rhondda) and - 1.938 (St. AIbans), and the coefficients 
of the destination factor, covering a similar range of values, run from 2.693 
(London) and 1.213 (Birmingham) to - 2.458 (Rhondda) and - 2.196 
(Hartlepool). 

5. CONCLUSIONS ABOUT THE DATA 

As stated above, the use of Poisson regression, based as it is on a probability 
distribution with only one parameter, allows reasonably unambiguous conclusions 
to be drawn concerning the fit of model to data. It is clear that none of the models 
fitted provides anything like an adequate fit to the data. However, all the models 
described do account for very substantial proportions of the deviance of a n d  
model, and there are substantial improvements introduced by the imposition of 
constraints and by the use of additional explanatory variables; size and distance do 
allow reasonably good estimates of migration to be made, and the other variables 
studied do help to improve these estimates (though the unemployment variables 
contribute relatively little considering their traditional theoretical importance). 

The failure of the models to fit may be due to the inapplicability of the simple 
Poisson distribution. A Poisson distribution is derived from the assumption that 
each individual has an equal and independent probability of moving from i to j ,  
but in practice migrants move as households, not as completely independent 
individuals. A generalized Poisson distribution may therefore be more appropriate, 
in which the movement of households follows a Poisson distribution, but the size of 
each household follows a known household size distribution. The coefficients and 
flows estimated in this model are identical to those for the Poisson, but the method 
of calculating deviance is different and thus different conclusions are to be drawn 
about the model's goodness of fit. Fitting a generalized Poisson distribution of this 
type, unconstrained and using only population and distance as explanatory variables, 
produces a much lower deviance (21,746), only some 40 percent in excess of the 
critical value at the 0.05 significance level. 
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There may be many processes, like this one, where a generalized or compound 
Poisson distribution is more theoretically attractive than an ordinary Poisson model. 
As Davies and Guy (1987) show, the parameter estimates derived from Poisson 
regression are consistent estimates of the parameters for these processes. The 
standard errors of these parameters, however, will be underestimated. Even if the 
nature of the probability process is not known, quasi-likelihood or pseudelikelihood 
methods (Davies and Guy 1987, pp. 306-10) can be used to calculate standard 
errors. In any case, the Poisson parameter estimates can still be used even if the 
process is not strictly Poisson. 

Returning to the Poisson models discussed above, it is clear that the constrained 
regression models produce better fits than the unconstrained models. They raise 
problems of interpretation, however; the fact that each place has a different and 
measurable effect on migration, whether as origin or destination, may not be 
especially helpful unless the differences in these effects can themselves be 
understood and modeled. It is also clear that adding additional explanatory 
variables to the constrained models does improve goodness of fit. 

6.  CONCLUSIONS ABOUT THE METHODS 

This example illustrates that the approach described can contribute to both the 
approaches to spatial interaction modeling outlined in the introduction. The 
statistical approach can benefit from the introduction of constrained models, where 
appropriate, which may greatly improve the goodness of fit, and the entropy- 
maximizing approach can benefit from the information the deviance statistic 
provides concerning goodness of fit and from the ability to experiment with the 
addition of extra explanatory variables. As shown above, the addition of other 
variables besides size and distance improved the goodness of fit whether the model 
was constrained or not. 

In summary, this paper has demonstrated how the Poisson regression approach 
can be extended to fit singly or doubly constrained spatial interaction models in the 
context of a large data set on British interurban migration. The approach allows the 
evaluation of goodness of fit for these constrained models and the addition of new 
variables to the basic size and distance framework. 
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