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Local Indicators of Spatial Association-LISA 

The capabilities for  uisualization, rapid data retrieual, and manipulation in geo- 
graphic informution systems (GIS) haue created the need for new techniques of 
exploratory data analysis that focus on the “spatial” aspects of the data. The 
IcEentifcation of local patterns of spatial assocktion is an important concern in 
this respect. In this paper, I outline a new general class of local indicators of 
spatial association (LISA) and show how they allow for the decomposition of 
global indicators, such as Moran’s I ,  into the contribution of each observation. 
The LISA statistics serve two purposes. On one hand, they may be interpreted 
as indicators of local pockets of nonstationarity, or hot spots, similar to the Gi 
and G: statistics of Getis and Ord (1992). On the other hand, they may be used 
to assess the influence of individual locations on the magnitude of the global 
statistic and to identifiy “outliers,” as in Anselin’s Moran scatterplot (1993a). 
An initial eualuation of the properties of a LISA statistic is carried out for the 
local Moran, which is applied in a study of the spatial pattern of confict for 
African countries and in a number of Monte Carlo simulations. 

1. INTRODUCTION 

The increased availability of large spatially referenced data sets and the sophis- 
ticated capabilities for visualization, rapid data retrieval, and manipulation in 
geographic information systems (GIS) have created a demand for new tech- 
niques for spatial data analysis of both an exploratory and a confirmatory nature 
(Anselin and Getis 1992; Openshaw 1993). Although many methods are avail- 
able in the toolbox of the geographical analyst, only few of those are appropri- 
ate to deal explicitly with the “spatial” aspects in these large data sets (Anselin 
1993b). 

In the analysis of spatial association, it has long been recognized that the as- 
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sumption of stationarity or structural stability over space may be highly unrea- 
listic, especially when a large number of spatial observations are used. Spatial 
structural instability or spatial drift has been incorporated in a number of mod- 
eling approaches. For example, discrete spatial regimes are accounted for in 
spatial analysis of variance (Griffith 1978, 1992; Sokal et al. 1993), and in regres- 
sion models with spatial structural change (Anselin 1988, 1990). Continuous 
variation over space is the basis for the spatial expansion paradigm (Casetti 
1972, 1986; Jones and Casetti 1992) and spatial adaptive filtering (Foster and 
Gorr 1986; Gorr and Olligschlaeger 1994). In exploratory spatial data analysis 
(ESDA), the predominant approach to assess the degree of spatial association 
still ignores this potential instability, as it is based on global statistics such as 
Moran’s I or Geary’s c (as in Griffith 1993). A focus on local patterns of asso- 
ciation (hot spots) and an allowance for local instabilities in overall spatial 
association has only recently been suggested as a more appropriate erspective, 

Examples of techniques that reflect this approach are the various geographical 
analysis machines developed by Openshaw and associates (for exam le, Open- 

the distance-based statistics of Getis and Ord (1992) (see also Ord and Getis 
1994), and the Moran scatterplot (Anselin 1993a). Also, a few approaches have 
been suggested that are based on a geostatistical perspective, such as the pocket 
plot of Cressie (1991) and the interactive spatial graphics of Haslett et al. (1991). 

In the current paper, I elaborate upon this general idea and outline a class of 
local indicators of spatial association (LISA). These indicators allow for the de- 
composition of global indicators, such as Moran’s I, into the contribution of 
each individual observation. I suggest that this class of indicators may become 
a useful addition to the toolbox of ESDA techniques in that two important 
interpretations are combined: the assessment of significant local spatial cluster- 
ing around an individual location, similar to the interpretation of the Gi and G: 
statistics of Getis and Ord (1992); and the indication of pockets of spatial non- 
stationarity, or the suggestion of outliers or spatial regimes, similar to the use of 
the Moran scatterplot of Anselin (1993a). 

In the remainder of the paper, I first outline the general principles underly- 
ing a LISA statistic, and suggest how it may be interpreted. I next show how a 
number of familiar global spatial autocorrelation statistics may be expressed in 
the form of a LISA. As an example of a LISA, I examine the local Moran more 
closely, first empirically, comparing it to the G: statistic and the Moran scatter- 
plot in an analysis of spatial pattern of conflict between African nations in the 
period 1966-78. This is followed by a series of simple Monte Car10 experi- 
ments, to provide further insight into the properties of the local Moran, its 
interpretation, and the relation between global and local spatial association. I 
close with some concluding remarks on future research directions. 

for example, in Getis and Ord (1992), Openshaw (1993), and Anse E ‘n (1993b). 

shaw, Brundson, and Charlton 1991; and Openshaw, Cross, and Char P ton 1990), 

2. LOCAL INDICATORS OF SPATIAL ASSOCIATION 

Definition 
As an operational definition, I su est that a local indicator of spatial associa- 

a. the LISA for each observation gives an indication of the extent of significant 

b. the sum of LISAs for all observations is proportional to a global indicator of 

tion (LISA) is any statistic that satis 9 es the following two requirements: 

spatial clustering of similar values around that observation; 

spatial association. 
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More formally, but still in general terms, I express a LISA for a variable yi, 
observed at location a, as a statistic Li, such that 

where f is a function (possibly including additional parameters), and the y~~ are 
the values observed in the neighborhood Ji of i. 

The values y used in the computation of the statistic may be the original (raw) 
observations, or, more appropriately, some standardization of these in order to 
avoid scale dependence of the local indicators, similar to the practice often 
taken for global indicators of spatial association. For example, in Moran's I, as 
well as in its local version discussed in the next section, the observations are 
taken as deviations from their mean. 

The neighborhood Ji for each observation is defined in the usual fashion, and 
may be formalized by means of a spatial weights or contiguity matrix, W. The 
columns with nonzero elements in a given row of this matrix indicate the rele- 
vant neighbors for the observation that corresponds to the row, that is, the ele- 
ments of Ji. Examples of criteria that could be used to define neighbors are 
first-order contiguity and critical distance thresholds. The spatial weights matrix 
may be row-standardized (such that its row elements sum to one) to facilitate 
inte retation of the statistics, but this is not required. However, when row 

form of weighted average of the values at all observations j E Ji. 
The Li should be such that it is possible to infer the statistical significance of 

the pattern of spatial association at location i. More formally, this requires the 
operationalization of a statement such as 

stan ';p ardization is carried out, the function f(y6, y~,) typically corresponds to a 

where Si is a critical value, and ai is a chosen significance or pseudo significance 
level, for example, as the result of a randomization test. 

The second requirement of a LISA, that is, its relation to a global statistic, 
may be stated formally as 

c Li = 7 4  
i 

(3) 

where A is a global indicator of spatial association and 7 is a scale factor. In other 
words, the sum of the local indicators is proportional to a global indicator. For the 
latter, a statement such as 

Prob [A > S] 5 a, (4) 

indicates significant spatial association over the whole data set. 

Zdentijication of Local Spatial Clusters 

Local spatial clusters, sometimes referred to as hot spots, may be identified as 
those locations or sets of contiguous locations for which the LISA is significant. 
Similar to the rationale behind the significance tests for the Gi and Gt statistics 
of Getis and Ord (1992), the general LISA can be used as the basis for a test on 
the null hypothesis of no local spatial association. However, in contrast to what 
holds for the Gi and Gf statistics, general results on the distribution of a generic 
LISA may be hard to obtain. This is similar to the problems encountered in 
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deriving distributions for global statistics, for which typically only approximate 
or asymptotic results are avai1able.l An alternative is the use of a conditional 
randomization or ermutation approach to yield empirical so-called pseudo 
significance levels P for example, as in Hubert 1987). The randomization is con- 
ditional in the sense that the value gi at a location a is held fixed (that is, not 
used in the permutation) and the remaining values are randomly permuted 
over the locations in the data set. For each of these resampled data sets, the 
value of Li can be computed. The resulting empirical distribution function pro- 
vides the basis for a statement about the extremeness (or lack of extremeness) 
of the observed statistic, relative to (and conditional on) the values computed 
under the null hypothesis (the randomly permuted values). In practice, this is 
straightforward to implement, since for each location only as many values as 
there are in the neighborhood set need to be resampled. Note that this same 
approach can also easily be applied to the Gi and Gt statistics. 

A complicating factor in the assessment of significance of LISAs is that the 
statistics for individual locations will tend to be correlated, as pointed out by 
Ord and Getis (1994) in the context of their Gi and Gf statistics. In general, 
whenever the neighborhood sets Ji and Jk of two locations i and k contain 
common elements, the corresponding L, and Lk will be correlated. Due to 
this correlation, and the associated problem of multiple comparisons, the usual 
interpretation of significance will be flawed. Moreover, it is typically impossible 
to derive the exact marginal distribution of each statistic and the significance 
levels must be approximated b Bonferroni inequalities or following the ap- 
proach suggested in Sid& ( I967r2 This means that when the overall significance 
associated with the multiple comparisons (correlated tests) is set to a, and there 
are m comparisons, then the individual significance aj should be set to either 
a / m  (Bonferroni) or 1 - (1 - (Sidn). The latter procedure, which yields 
slightly sharper bounds, is suggested by Ord and Getis (1994), with m = n, 
that is, the number of  observation^.^ Note that the use ‘of Bonferroni bounds 
may be too conservative for the LISA of individual locations. For example, if 
m is indeed taken to e ual the number of observations, then an overall signifi- 

one hundred observations, possibly revealing only very few if any “significant” 
locations. However, since the correlation between individual statistics is due to 
the common elements in the neighborhood sets, only for a small number of loca- 
tions k will the statistics actually be correlated with an individual L,. For example, 
on a regular lattice using the ueen criterion of contiguity, first-order neighbors 

borhood sets, second-order neighbors three, and higher-order neighbors none. 
Clearly, the number of common neighbors does not change with the number of 
observations, so that using the latter in the computation of the Bonferroni bounds 
may be overly conservative. Hence, while it is obvious that some correction to the 
individual significance levels is needed, the extent to which it is indeed necessary 
to take m = n remains to be further investigated. 

cance of a = 0.05 woul 1 imply individual levels of ai = 0.0005 in a data set with 

(ignoring border and comer ce ils ) will have four common elements in their neigh- 

‘With the exception of the results in Tiefelsdorf and Boots (1994), the general statement by Cliff 
and Ord (1981, p. 46) still holds: “except for very small lattices, exact evaluation of the distribution 
function is impractical and approximations must be found.” 

*An application of these procedures to the interpretation of the significance of a spatial correlo- 
gram was earlier suggested by Oden (1984). 

3Note that the Sidik approach only holds when the statistics under consideration are multivariate 
normal, which is unlikely to be the case for the general class of LISA statistics [see also Savin (1980) 
for an extensive discussion of the relative merits of various notions of bounds]. 
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Indication of Local Instability 
The indication of local patterns of spatial association may be in line with a 

global indication, although this is not necessarily the case. In fact, it is quite 
possible that the local pattern is an aberration that the global indicator would 
not pick up, or it may be that a few local patterns run in the opposite direction 
of the global spatial trend. The second requirement in the definition of a LISA 
statistic is imposed to allow for the decomposition of a global statistic into its 
constituent parts. This is of interest to assess the extent to which the global 
statistic is representative of the average pattern of local association. If the 
underlying process is stable throughout the data, then one would expect the 
local indications to show little variation around their average. In other words, 
local values that are very different from the mean (or median) would indicate 
locations that contribute more than their expected share to the global statistic. 
These may be outliers or high leverage points and thus would invite closer scru- 
tiny. This interpretation is roughly similar to the use of Cressie’s (1991) pocket 
plots in geostatistics. By imposing the requirement that the Li sum to a magni- 
tude that is proportional to a global statistic, their distribution around the mean 
yA/n can be evaluated. Extreme Li can be identified as outliers in this distribu- 
tion, for example, as those values that are more than two standard deviations 
from the mean (the two-sigma rule) or more than 1.5 times the interquartile 
range larger than the third quartile (for example, in a box plot). 

This second interpretation of the LISA statistics is similar to the use of a 
Moran scatterplot to identify outliers and leverage points for Moran’s I (Anse- 
lin 1993a). In general, it may be more appropriate than the interpretation of 
locations as hot spots suggested in the previous section when an indicator of 
global spatial association is significant. In this respect, it is important to note 
that the Getis-Ord Gi and G: statistics were suggested to detect significant 
spatial clustering at a local level when global statistics do not provide evideme 
of spatial association (Getis and Ord 1992, p. 201). Indeed, in their exam le, 
Getis and Ord find no global autocorrelation for SIDS cases in North CaroEna 
counties, while several significant local clusters are indicated. However, the op- 
posite case often occurs as well, that is, a strong and significant indication of 
global spatial association may hide totally random subsets, particularly in large 
data sets. For example, in an analysis of the 1930 elections in Weimar Germany, 
OLoughlin, Flint, and Anselin (1994) found that a highly significant Moran’s I 
at the level of 921 electoral districts in effect hides several distinct local patterns 
of spatial clustering and complete spatial randomness for six regional subsets. In 
such an instance, the distribution of the Li statistic as indicator of local spatial 
clustering will be affected by the presence of global spatial association. How- 
ever, the second interpretation of LISA statistics, as indications of outliers or 
leverage points in the computation of a global statistic is not affected. I return 
to this issue in section 5.  

3. LISA FORM OF FAMILIAR SPATIAL AUTOCORRELATION STATISTICS 

Local Gamma 

A broad class of spatial association statistics may be based on the general 
index of matrix association or r index, originally outlined in Mantel (1967). The 
ap lication of the I’ index to spatial autocorrelation in a wide range of contexts 

1985; Hubert, Golledge, and Costanzo 1981; Hubert et al. 1985; Costanzo, 
is x escribed in a series of papers by Hubert and Golledge (for example, Hubert 
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Hubert, and Golledge 1983).4 Such an index consists of the sum of the cross 
products of the matching elements a,j and bij in two matrices of similarity, say 
A and B, such that 

i j  

Measures of spatial association are obtained by expressing spatial similarity in 
one matrix (for example, a contiguity or spatial weights matrix) and value simi- 
larity in the other. Different measures of value similarity yield different indices 
for spatial association. For example, using aij = xixj yields a Moran-like meas- 
ure, setting aij = (zi - x j )  yields a Geary-like index, while taking ~j = 1zi - zjl 
results in an indicator equivalent to the one suggested by Royaltey, Astrachan, 
and Sokal (1975) [see, for example, Anselin (1986) for details on the implemen- 
tation]. 

Since the I' index is a simple sum over the subscript i, a local Gamma index 
for a location i may be defined as 

2 

Similar to what holds for the global I' measure, different measures of value simi- 
larity will yield different indices of local spatial association. It is easy to see that 
the I'i statistics sum to the global measure I?. It is possible that the distribution 
of the individual ri can be approximated using the principles outlined by Mielke 
(1979) and Costanm et al. (1983), though this is likely to be complex, and beyond 
the current scope. On the other hand, the implementation of a conditional permu- 
tation approach is straightforward. This allows the individual I'i to be interpreted 
as indicators of significant local spatial clusters. The second interpretation of the 
LISA statistic, as a diagnostic for outliers or leverage points can be carried out 
by comparing the distribution of the I'i to r/n. 
Local Moran 

tion i may be defined as 
As a special case of the local Gamma, a local Moran statistic for an observa- 

where, analogous to the global Moran's I, the observations zi, zj are in deviations 
from the mean, and the summation over j is such that only neighboring values 
j E Ji are included. For ease of interpretation, the weights wij may be in row- 
standardized form, though this is not necessary, and by convention, wii = 0. 

It can be easily seen that the corresponding global statistic is indeed the 
familiar Moran's I. The sum of local Morans is 

while Moran's I is 

4Note that this statistic also forms the basis for the derivation of the distribution of Moran's I and 
Geary's c statistics in Cliff and (3rd (1981, p. 23 and chapter 2). In Getis (1991), this index is applied 
to integrate spatial association statistics and spatial interaction models into a common framework. 
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i j  i 

or 

where SO = Xi C .  wi.. Using the same notation as ClifF and Ord (1981, p. 45), 
and taking m2 = gi 2 / n  as the second moment (a consistent, but not unbiased 
estimate of the variance), the factor of proportionality between the sum of the 
local and the global Moran is, in the notation of (3), 

y = som2. (11) 

Note that for a row-standardized spatial weights matrix, SO = n, so that 
y = Xi 4, and for standardized variables (that is, with the mean subtracted and 
divided by the standard deviation), m2 = 1, so that 7 = So. Also, the same type 
of results obtain if instead of (7) each local indicator is divided by m2, which is 
a constant for all locations. In other words, the local Moran would then be 
computed as 

The moments for Ii under the null hypothesis of no spatial association can be 
derived using the principles outlined by Cliff and Ord (1981, pp. 42-46) and a 
reasoning similar to the one by Getis and Ord (1992, pp. 190-92). For example, 
for a randomization hypothesis, the expected value turns out to be 

E[Ii] = -wi/(n - l), (13) 

with wi as the sum of the row elements, Cj wij, and the variance is found as 

Var [Ii] = q 2 ) ( n  - bz)/(n - 1) 

+2Wi(kh)(2b2 - n)/(n - l>(n  - 2) - wf/(n - I)', (14) 

with bz = ml/rmE, m4 = xi zf/n as the fourth moment, wq4 = C.+ w:~, and 
2wqth) = cyi ChZi 'Wikwih. The details of the derivation are given in appendix A. 

A test for significant local spatial association may be based on these moments, 
although the exact distribution of such a statistic is still unknown. This is further 
explored in section 5. Alternatively, a conditional randomization approach may 
be taken, as outlined earlier. Given the structure of the statistic in (12), it fol- 
lows that only the quantity Cj w+j needs to be computed for each permuta- 
tion (since the zi/m2 remains constant). Note that the randomization method 
applied to (12) will yield the same empirical reference distribution as when 
applied to the Getis and Ord Gi and G: statistics. Hence, inference based on 
this nonparametric approach will be identical for the two statistics. This easily 
follows from considering which elements in the statistics change for each 
permutation of the data. For example, the Gi statistic for an observation i is 
defined as 
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where wij(d) are the elements in a distance-based weights matrix [for details, see 
Getis and Ord (1992)l. The only aspect of equation (15) that changes with each 
permutation is the numerator, since the denominator does not depend on the spa- 
tial allocation of observations. Clearly, this is the same term as the varying part of 
the numerator in (12). In other words, the pseudo significance levels (that is, the 
inference) generated with a permutation a proach applied to the Ii statistic will 

The interpretation of the local Moran as an indicator of local instability fol- 
lows easily from the relation between local and global statistics expressed in 
equation (11). Specifically, the average of the Ii will equal the global I, up to a 
factor of proportionality. Extreme contributions may thus be identified by 
means of simple rules, such as the two-sigma rule, or by identifying outliers in 
a box plot. Note that this notion of extremeness does not imply that the corre- 
sponding Ii are significant in the sense outlined earlier, but only indicates the 
importance of observation i in determining the global statistic. This similarity 
to the identification of outliers, leverage and influence points in the Moran 
scatterplot (Anselin 1993a) will be further examined in the empirical illustration. 
Local G e a y  

tion i may be defined as 

be identical to that for a Gi or G; statistic. ! 

Using the same principles as before, a local Geary statistic for each observa- 

2 
G = c w i j  (Zi - Zj) , 

j 

or as 

using the same notation as before. Using expression (17) (without loss of general- 
ity), the summation of the q over all observations yields 

In comparison, Geary’s familiar c statistic is 
r 1 

Thus, the factor of proportionality between the sum of the local and the global 
Geary statistic is, in the notation of (3), 

y = 2nSo/(n - 1). (20) 

Clearly, for row-standardized weights, since So = n, this factor becomes 

5See also Ord and Getis (1994) for a discussion of the relationship between their statistics and 
Moran’s I .  
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2n2/(n - 1). The q statistic is interpreted in the same way as the local Gamma 
and the local Moran. 

4. ILLUSTRATION: SPATIAL PATTERNS OF CONFLICT IN AFRICA 

A geographical perspective has received much interest in recent years in the 
analysis of international interactions in general, and of international conflict in 
particular [see, for example, the review by Diehl (1992)l. Measures of spatial 
association, such as Moran’s I, have been applied to quantitative indices for 
various types of conflicts and cooperation between nation-states, such as those 
contained in the COPDAB data base (Azar 1980). For such indices of interna- 
tional conflict and cooperation, both O’Loughlin (1986) and Kirby and Ward 
(1987) found significant patterns of spatial association indicated by Moran’s I. 
The importance of spatial effects in the statistical analysis of conflict and coop- 
eration was confirmed in a study of the interactions among forty-two African 
nations, over the period 1966-78, reported in a series of papers by O’Loughlin 
and Anselin (O’Loughlin and Anselin 1991, 1992; Anselin and O’Loughlin 1990, 
1992). For an index of total conflict in particular, there was strong evidence of 
both positive spatial autocorrelation (as indicated by Moran’s I, by a I’ index 
of spatial association, and by the estimates in a mixed regressive, spatial auto- 
regressive model), as well as of spatial heterogeneity in the form of two dis- 
tinct spatial regimes (as indicated by Getis-Ord Gf statistics and the results of 
a spatial Chow test on the stability of regression coefficients). This phenome- 
non is thus particularly suited to illustrate the LISA statistics suggested in this 
paper. The illustration focuses on the two interpretations of the LISA statistics, 
as indicators of local spatial clusters and as diagnostics for local instability. It is 
approached from the perspective of exploratory spatial data analysis and the 
substantive interpretation of the models is not considered here [see O’Lough- 
lin and Anselin (1992) for a more extensive discussion]. 

The spatial pattern of the index for total conflict is illustrated in the quartile 
map in Figure 1, with the darkest shade corresponding to the highest quartile 
[for details on the data sources, see Anselin and O’Loughlin (1992)l. The sug- 
gestion of spatial clustering of similar values that follows from a visual inspec- 
tion of this map is confirmed b a strong positive and significant Moran’s I of 

Geary c index of 0.584, with associated standard normal z-value of -2.90 
( p  < 0.002).6 These statistics are computed for a row-standardized spatial weights 
matrix based on first-order contiguity (common border), given the importance 
of borders in the study of international conflict (Diehl 1992). 
ldentijication of Local Spatial Clusters 

0.417, with an associated stan d ard normal z-value of 4.35 ( p  < 0.001), and a 

I first focus on a com arison of the identification of local spatial clusters 

Moran Ii indicator presented in equation (12). Note that the former, while 
being a statistic for local spatial association, is not a LISA in the terminology 
of section 2, since its individual components are not related to a global statistic 
of spatial association. This requirement is not needed for the identification of 
significant local spatial clusters, but it is im ortant for the second interpreta- 

provided by the Getis-Or x Gf statistic (as a standardized z-value) and the local 

tion of a LISA, as a diagnostic of local insta ! ility in measures of global spatial 

6All computations were carried out with the Spacestat software for spatial data analysis (Anselin 
1992); the map was created with the Idrist software (Eastman 1992), using the Spacestat-Iddsf in- 
terface: other graphics were produced by means of the SPlus statistical software. 
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FIG. 1. Total Conflict Index for African Countries (1966-78) 

association (for example, in the presence of significant global association), which 
is discussed in the next section. 

Using the same row-standardized weights matrix as for the global measures 
given earlier, the results for the indicators of local spatial association are re- 
ported in the third and fifth columns of Table 1, for each of the forty-two coun- 
tries in the example. The standardized z-value for Ii, computed by subtracting 
the expected value (13) and dividing by the standard deviation [the square root 
of (14)], is listed in the sixth column. Two indications of significance are given, 
one based on an approximation by the normal distribution, p ,  (in the seventh 
column of Table 1) and one derived from conditional randomization, using a 
sample of 10,000 permutations, p ,  (in the last column of Table l).7 As men- 
tioned earlier, the pseudo significance obtained by means of a conditional 
randomization procedure is identical for G; and Ii. While this may suggest 
that the normal approximation shown to hold for G; (listed in column four) 
and assessed in detail in Ord and Getis (1994) may be valid for the Ii statistic 
as well, this has not been demonstrated. In fact, evidence from some initial 
Monte Carlo experiments in section 5 seems to indicate otherwise. 

Note that the two statistics measure different concepts of spatial association. 
For the G; statistic, a positive value indicates a spatial clustering of high values, 
and a ne ative value a s atial clustering of low values, while for the Ii, a positive 

ative values a clustering of dissimilar values (for example, a location with high 
values surrounded by neighbors with low values), as in the interpretation of the 

value in ct 'cates spatial c lp ustering of similar values (either high or low), and neg- 

7 More precisely, the sample consists of the original observed value of the statistic and the values 
computed for 9,999 conditionally randomized data sets. 
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TABLE 1 
Measures of Local Spatial Association 

Id country G: P 4 44)  Pn R 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 

Gambia 
Mali 
Senegal 
Benin 
Mauritania 
Niger 

Guinea 
Burkina Faso 
Liberia 
Sierra Leone 
Ghana 
Togo 
Cameroon 
Nigeria 
Gabon 
CAR 
Chad 
Congo 
Zaire 
Angola 
Uganda 
Kenya 
Tanzania 

Rwanda 
Somalia 
Ethiopia 
Zambia 
Zimbabwe 
Malawi 
Mozambique 
South Africa 
Lesotho 
Botswana 
Swaziland 
Morocco 
Algeria 
Tunesia 
Libya 
Sudan 
E m t  

Ivory coast 

Burundi 

-0.984 
- 1.699 
- 1.463 
- 1.301 
-0.605 
- 1.049 
- 1.417 
- 1.449 
- 1.751 
- 1.041 
-0.870 
- 1.103 
-0.991 
- 1.133 
- 1.173 
- 0.789 
1.174 
0.463 

-0.203 
2.023 
1.235 
3.336 
3.503 
1.098 
0.774 
1.457 
1.183 
2.627 
0.753 

-0.200 
0.212 

-0.288 
-0.868 
- 0.298 
0.041 

-0.659 
0.022 

- 0.363 
0.579 
2.553 
4.039 
4.421 

0.1626 
0.0447 
0.0717 
0.0966 
0.2726 
0.1471 
0.0782 
0.0737 
0.0400 
0.1490 
0.1921 
0.1351 
0.1610 
0.1285 
0.1205 
0.2150 
0.1203 
0.3218 
0.4198 
0.0216 
0.1085 

0.0oO4 
0.0002 
0.1360 
0.2194 
0.0725 
0.1184 
0.0043 
0.2258 
0.4209 
0.4161 
0.3868 
0.1927 
0.3827 
0.4837 
0.2548 
0.4913 
0.3583 
0.2813 
0.0053 

O.oo00 
O.oo00 

0.375 
0.464 
0.257 
0.194 
0.097 
0.231 
0.290 
0.183 
0.508 
0.186 
0.265 
0.148 
0.219 
0.259 
0.114 
0.204 

-0.442 
- 0.105 
0.011 
0.710 
0.118 
1.943 
1.197 
0.272 

- 0.484 
-0.752 
0.453 
0.725 
0.042 

-0.010 
-0.229 
0.017 

-0.183 
-0.419 
-0.004 
0.017 

-0.097 
-0.010 
0.005 
0.804 
2.988 
6.947 

0.428 
1.482 
0.623 
0.484 
0.269 
0.774 
0.788 
0.519 
1.479 
0.398 
0.444 
0.326 
0.462 
0.711 
0.306 
0.349 

- 1.046 
-0.225 
0.079 
2.591 
0.270 
4.928 
3.060 
0.973 

-0.872 
- 1.613 
0.731 
1.422 
0.219 
0.033 

0.114 
- 0.388 
-0.480 
-0.423 
0.039 
0.063 

-0.111 
0.040 
0.046 
2.300 
9.898 
10.679 

0.3342 
0.0692 
0.2667 
0.3142 
0.3940 
0.2193 
0.2154 
0.3020 
0.0695 
0.3452 
0.3286 
0.3721 
0.3219 
0.2387 
0.3798 
0.3634 
0.1477 
0.4111 
0.4684 
0.0048 
0.3936 

O.oo00 
0.0011 
0.1652 
0.1915 
0.0534 
0.2324 
0.0775 
0.4134 
0.4868 
0.3490 
0.4545 
0.3156 
0.3361 
0.4845 
0.4749 
0.4557 
0.4841 
0.4818 
0.0107 

O.oo00 
O.oo00 

0.4727 
0.0456 
0.0270 
0.0612 
0.4111 
0.2404 
0.0611 
0.0365 
0.0339 
0.1333 
0.4006 
0.0885 
0.1894 
0.1706 
0.0851 
0.3139 
0.0613 
0.2125 
0.4734 
0.0404 
0.0999 
0.0031 
0.0016 
0.1898 
0.1040 
0.0285 
0.1266 
0.0090 
0.1934 
0.4041 
0.2088 
0.4728 
0.1435 
0.2341 
0.3691 
0.4128 
0.4995 
0.4139 
0.1804 
0.0133 
0.0003 
0.0058 

global Moran's I .  This e lains the sign differences between the values in the 
third and fifth columns o ';p Table 1 (for example, for the first sixteen countries 
in the table). Following the suggestion by Ord and Getis (1994), a Bonferroni 
bounds procedure is used to assess significance. With an overall ar level of 
0.05, the individual significance levels for each observation should be taken as 
0.05/42, or 0.0012.8 Given this conservative procedure, the normal a proxima- 
tion for both the GZ and the Ii show the same four countries to e X E  ibit local 

*For a = 0.10, the corresponding individual significance level is 0.0024. Since normality was not 
demonstrated, the original Bonferroni bounds were used, rather than the slightly sharper Sidiik pro- 
cedure suggested in Ord and Getis (1994). This does not affect the interpretation of the results in 
Table 1, since the difference between the two only appears at the fifth significant digit. For example, 
for a = 0.05, the Bonferroni bound is 0.001190, while the Si& bounds are 0.001221. 
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FIG. 2. Density of Randomized Local Moran for Uganda (i = 22) 

spatial clustering (with the significance levels in bold type in Table 1). They are 
Uganda (22), Kenya (23), Sudan (41), and Egypt (42), which themselves form a 
cluster in the northeast of Africa, part of the so-called Shatterbelt.9 This spatial 
clustering (or spatial autocorrelation) of both the Gf and the LISA statistics is a 
result of the way they are constructed, and should be kept in mind when visu- 
ally interpreting a map of LISAs (or Gf). 

The conditional randomization approach provides a still more conservative 
picture of (pseudo) significant local spatial clustering, with only Sudan meeting 
the Bonferroni bound for an overall a = 0.05. For this country, two out of the 
9,999 statistics computed from the randomized samples exceed the observed 
one, clearly labeling the latter as “extreme.”lo Of the other three previously 
significant countries, only Kenya comes close to the threshold (with a seudo 
significance of 0.0016), but both Uganda (0.0031) and Egypt (0.0058) f ar  1 short 
of even the bounds for an overall (Y = 0.10. 

Some insight into the reasons for the differences in interpretation between 
the normal ap roximation and the randomization strategy can be gained from 

ples used in the computation of the pseudo significance for Uganda (22). This 
country was chosen since it has different significance indications between the 
two criteria, and it is not a boundary or comer location (it has five neighbors, 
which is about average for the sample). The density function in Figure 2 is 
smoothed, using a smoothing parameter of twice the interquartile distance. 
The sample average and the observed value are indicated on the figure (the 
latter with the label “i = 22”). The density under the curve for values larger 
than 1.943 (the observed value) is 0.0031, indicating its extremeness (but not 
significance according to the Bonferroni criterion). The distribution is clearly 
non-normal, and heavily skewed to the right (skewness is 0.7997). Its average 
of -0.0904 is smaller than the expected value under the null hypothesis for 
observation 22, which is -0.0244. In addition, its standard deviation of 0.6340 
is more than 1.5 times the value that would be expected under the theoretical 
null distribution, or 0.3991 [the square root of expression (14)]. 

Figure 2, whic ph shows the empirical distribution of the Ii for the 10,000 sam- 

QThe identification numbers in parentheses correspond to the labels in the Moran scatterplot of 

lome Bonferroni bound for an overall significance level of a = 0.01 would be 0.0002. 
Figure 3. 
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The differences between the empirical density in Figure 2 and (i) the theoret- 
ical moment and (ii) an approximation of the null distribution by a normal raise 
two important issues. First, the normal may not be an appropriate approxima- 
tion, and higher order moments may have to be used, as in the approximation 
to the global I? statistics in Costanzo, Hubert, and Golledge (1983). However, it 
may also be that the sample size and/or the number of neighbors in this exam- 
ple (respectively, forty-two and five) are too small for a valid approximation by 
the normal.11 Secondly, and more importantly, the moments under the null 
hypothesis are derived assuming that each value is equally likely at any loca- 
tion, which is inappropriate in the presence of global spatial association. In 
other words, the theoretical moments in (13) and (14) do not reflect the latter. 
This is appropriate when the objective is to detect local spatial clusters in the 
absence of global spatial association [for example, as was the stated goal in Ge- 
tis and Ord (1992)], but is not correct when global spatial association is present 
(as is the case in the example considered here). While the z-values for both G: 
and I j  would suffer from this problem, the conditional randomization strategy 
does not, since it treats the observations as $they were spatially uncorrelated. 
This issue is revisited in section 5. 
Indication of Local Instability 

The second interpretation of a LISA is as a diagnostic for outliers with re- 
spect to a measure of global association, in this example Moran’s I. The Ii stat- 
istics are compared to the insights provided by the Moran scatterplot, suggested 
by Anselin (1993a) as a device to achieve a similar objective, that is, to visualize 
local instability in spatial autocorrelation. Note that the Moran scatterplot is 
not a LISA in the sense of this paper, since no indication of significant local 
spatial clustering is obtained. The principle behind the interpretation of the 
Moran scatterplot is that many statistics for global association are of the form 
z‘Az/dz, where z is a vector of observations (in deviations from the mean) 
and A is a matrix of known elements. In the case of Moran’s I, the A is the 
row-standardized spatial weights matrix W. Given this form for the statistic, 
it may be visualized as the slope of a linear regression of Wz on z [see also 
Anselin (1980) for the interpretation of Moran’s I as a regression coefficient]. 
A scatterplot of Wz on z [similar to a spatial lag scatterplot in geostatistics, for 
example, as in Cressie (1991)], with the linear regression line superimposed, 
provides insight into the extent to which individual (Wzi, zi) pairs influence 
the global measure, exert leverage, or may be interpreted as outliers, based on 
the extensive set of standard regression diagnostics (for example, Cook 1977; 
Hoaglin and Welsch 1978; Belsley, Kuh, and Welsch 1980). 

The Moran scatterplot for the African conflict data is given as Figure 3, with 
the individual countries labeled as in Table 1. The (Wzi, zi) pairs are given for 
standardized values, so that “outliers” may be easily visualized as points further 
than two units away from the origin. In Figure 3, both Sudan (41) and Egypt 
(42) have values for total conflict that are more than two standard deviations 
higher than the mean (on the horizontal axis of Figure 3), while Egypt also has 
values for the spatial lag that are twice the mean (vertical axis of Figure 3). The 
use of standardized values also allows the Moran scatterplots for different vari- 
ables to be comparable. The four quadrants in Figure 3 correspond to the four 
types of spatial association. The lower left and upper right uadrants indicate 
spatial clustering of similar values: low values (that is, less t ll an the mean) in 

“.See Getis and Ord (1992, pp. 191-92) for the importance of both sampIe size and the number 
of neighbors for the normal approximation of the Gi and G: statistics. 
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FIG. 3. Moran Scatterplot for Total Conflict ( I  = 0.417) 

the lower left and high values in the upper right. Stated differently, the lower 
left pairs would correspond to negative values of the Gi and Gi, and the up er 
right pairs to positive values. With the Ii statistics, no distinction is possi YJ le 
between the two forms of association since both result in a positive sign. The 
upper left and lower right quadrants of Figure 3 indicate spatial association of 
dissimilar values: low values surrounded by high neighboring values for the 
former, and high values surrounded by low values for the latter. These corre- 
spond to Ii statistics with a negative sign. Since they are not cross-product 
statistics, the Gi and GI statistics do not capture this form of spatial association. 

While the overall pattern of spatial association is clearly positive, as indicated 
by the slope of the regression line (Moran’s I), eleven observations show asso- 
ciation between dissimilar values: eight in the upper left quadrant, also shown 
as light islands within the darkest clusters of Figure 1; and three in the lower 
right quadrant (Algeria, 38, Morocco, 37, and South Africa, 33), surrounded by 
countries in the first and second quartile in Figure 1. This may indicate the 
existence of different regimes of spatial association. 

The application of regression diagnostics for leverage to the scatterplot sug- 
gests that two observations deserve closer scrutiny. The highly significant local 
spatial association for Sudan (41) and Egypt (42) finds a match with the indica- 
tion of leverage provided by the diagonal elements of the hat matrix. These are 
respectively 0.247 (for Sudan) and 0.316 (for Egypt), both distinctly larger than 
the usual cutoff of 2 k / n  (where Ic is the number of explanatory variables in the 
regression, or 2 in this example), or 0.095.12 The third largest hat value of 0.085 

12The diagonal elements of the hat matrix H = X(X’X)-’X’, with X as the matrix of observations 
on the explanatory variables in a regression, are well known indicators of leverage. See, for example, 
Hoaglin and Welsch (1978). 
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FIG. 4. Local Moran Outliers 

for Uganda, 22, does not exceed this threshold. One may be tempted to con- 
clude that the elimination of Egypt and Sudan from the sample would void the 
indication of spatial association, but this is not the case. Without both countries, 
Moran’s I drops to 0.254, but its associated z-value is 2.53 (using the randomiza- 
tion null hypothesis), which is still highly significant at p < 0.006. 

The distribution of Ii statistics for the sample can similarly be exploited to 
provide an indication of outliers or leverage points. In Figure 4, this is illu- 
strated by means of a simple two-sigma rule. The mean of the distribution of 
the I* is Moran’s I, or 0.417, and twice the standard deviation from the mean 
corresponds to the value of 2.798. Clearly, this is exceeded by both Sudan 
(41), with a value of 2.988 for I*, and by Egypt (42), with a value of 6.947. 
While this is obviously not a test in a strict sense, it provides useful insight 
into the special nature of these two observations. All four indicators are in 
agreement in this respect, that is, the Ga and Ii as measures of local spatial 
clusters, and the Moran scatterplot and Ii as indicators of outliers. The substan- 
tive interpretation of the special nature of these observations is beyond the 
scope of the exploratory data analysis. The role of the latter is to point them 
out and by doing so to aid in the suggestion of possible explanations or hypoth- 
eses. Alternatively, the indication of “strange” observations may point to data 
quality problems, such as coding mistakes, or, in the case of spatial analysis, 
problems with the choice of the spatial weights matrix. 

5. MONTE CARL0 EVIDENCE: GLOBAL AND LOCAL SPATIAL ASSOCIATION 

Two issues raised by the results of the empirical illustration in the previous 
section are revisited here by means of some initial Monte Carlo experiments. 
The first pertains to the distribution of the local Moran I* statistic under the 
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null hypothesis of no (global) spatial autocorrelation. The second issue is the 
distribution of the local statistic when global spatial autocorrelation is present, 
and its implication for the assessment of significance. This may also have rele- 
vance for the distribution of the Gi and Gf statistics in this situation, since their 
distribution under the null is also based on the absence of global association. As 
pointed out earlier, it is quite common to study local association in the presence 
of global association, for example, this is the case in the illustration presented in 
the previous section. This second issue also has relevance for the assessment of 
outliers or local instability, that is, the second interpretation of the local Moran. 
It is well known that many spatial processes that produce s atially autocorre- 

for the familiar spatial autoregressive process (Anselin 1990). The spatial hetero- 
geneity indicated by LISAs, based on a null hypothesis of no spatial association 
may therefore be a natural characteristic of the spatial process, and not an indica- 
tion of local pockets of nonstationarity. 

Two sets of experiments were carried out, one based on the same spatial 
weights matrix as for the African example (with n = 42), the other on the weights 
matrix for a 9 by 9 regular grid, using the queen notion of contiguity (with 
n = 81). Both weights matrices were used in row-standardized form. For each 
of these configurations, 10,000 random samples were generated with increas- 
ing degrees of spatial autocorrelation, constructed by means of a simple s atial 

generated standard normal variates, a spatially autocorrelated landscape was 
generated as a vector y: 

lated patterns also generate spatial heterogeneity. For examp P e, this is the case 

autoregressive transformation. More formally, given a vector E of ran c f  omly 

y = (I - pW)%, 

where p is the autoregressive parameter, taking values of 0.0, 0.3, 0.6, and 0.9, 
and I is a n by n identity matrix. While the resulting samples will be spatially 
autocorrelated for nonzero values of p, there is no one-to-one match between 
the value of p and the global Moran’s I. As is well known, the latter is capable of 
detecting many different forms of spatial association, and is not linked to a specific 
spatial process as the sole alternative hypothesis. 

Distribution of the Local Moran under the Null Hypothesis 

The distribution of the standardized z-values that correspond to the Ii statis- 
tic was considered in detail for two selected observations, the location corre- 
sponding to Uganda, i = 22, for the African weights matrix, and the location 
corresponding to the central cell, i = 41, for the regular lattice. Not only are 
the dimensions of the data sets different in the two examples (n = 42 and 
n = 81), but also the number of neighbors differ for the observations under 
consideration, as they are respectively 5 and 8. The moments of each distribu- 
tion for the z-values, based on the 10,000 replications, are given in the first row 
of Table 2. While the mean and standard deviation are rough1 in accordance 

tent the skewness are not. This is further illustrated by the density graph in 
Fi re 5 (for n = 81), which clearly shows the leptokurtic nature of the dis- 

density graph for the African case is very similar and is not shown. Instead, a 
quantile-quantile plot for the African example is given in Figure 6, to further 
illustrate the lack of normality. While there is general agreement in the central 
section of the two distributions (total agreement would be shown as a perfect 

with those for a standard normal distribution, the kurtosis an C I  to a lesser ex- 

tri r ution and the associated thicker tails (compared to a normal density). The 
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TABLE 2 
Moments of Local Moran with Global Spatial Autocorrelation* 

P Mean St.Dev. Skew Kurtosis Mean St.Dev. Skew Kurtosis 

0.0 0.0032 0.9895 -0.2599 7.993 0.0236 1.0356 -0.1073 7.711 
0.3 0.2491 1.0730 0.7417 7.635 0.2666 1.1733 0.9320 7.853 
0.6 0.5833 1.2144 1.4748 7.454 0.6057 1.3958 1.7475 8.673 
0.9 1.0782 1.3465 1.5357 5.850 0.8961 1.4690 2.4073 11.114 

n = 42 n=81 

a. z-values for local Mom% 10,000 replications. using observation 22 for n = 42 and observation 41 for n = 81. 

I I I 

linear fit), at the tails, that is, where it matters in terms of significance, this 
clearly is not the case. A more rigorous assessment of the distribution, based 
on an asymptotic chi-s uared test constructed around the third and fourth 

mality in both cases. 
This more extensive assessment confirms (in a controlled setting) the earlier 

suggestion implied by the discrepancy between the significance levels under the 
normal approximation and the conditional randomization in Table 1. Note that 
the African example in Table 1 exhibited significant global spatial autocorrela- 
tion, while the simulations here do not (by design). Further results are needed 
to see whether larger sample sizes or higher numbers of neighbors are 
needed before normality is obtained. However, from the initial impressions 
gained here it would seem that the normal approximation may be inappropri- 
ate, and that higher moments (given the values for skewness and kurtosis in 
Table 2) would be needed in order to obtain a better approximation [for exam- 
ple, as in Costanzo, Hubert, and Golledge (1983) for the r statistic]. 

The implications of these results for inference in practice are that even when 
no global spatial autocorrelation is present, the significance levels indicated by a 
normal approximation will result in an over-rejection of the null hypothesis for 
a given Type I error. Clearly, a more conservative approach is warranted, 
although the exact nature of the corrections to the ai awaits further investiga- 
tion. In the meantime, a conditional randomization approach provides a useful 
alternative. 

moments (Kiefer and Sa 9 mon 1983) strongly rejects the null hypothesis of nor- 

5 0 5 

FIG. 5. Density of %-value for Local Moran (n = 81; 10,000 Replications) 
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FIG. 6. Quantiles of z-values of Local Moran against the Normal Distribution (n = 42; 10,000 
Replications) 

Distribution of the Local Moran in the Presence of Global Spatial 
Autocorrelation 

The presence of global spatial autocorrelation has a strong influence on the 
moments of the distribution of the local Moran, as indicated by the results in 
Table 2. Both mean and standard deviation increase with spatial autocorrela- 
tion, but the most significant effect seems to be on the skewness of the distribu- 
tion. This is further illustrated by the box plots in Figure 7 (for the case with 
n = 42; the results for the larger sample size are similar). As p increases, the 
distribution becomes more and more asymmetric around the median, while 
both the interquartile range and the median itself increase as well. Clearly, in 
the presence of global spatial autocorrelation, the moments indicated by the 
expressions (13) and (14) become inappropriate estimates of the moments of 
the actual distribution. The same problem would seem to also affect the dis- 
tribution for the Getis and Ord Gi and G: statistics, since they are derived in 
a similar manner. Consequently, inference for tests on local spatial clusters 
that ignores this effect is likely to be misleading. The magnitude of the error 
cannot be derived from the initial Monte Carlo results reported here, and 
further investigation is needed, both empirical and analytical. In practice, infer- 
ence based on the pseudo significance levels indicated by a conditional rando- 
mization approach seems to be the only viable alternative. 

Evidence of Outliers in the Presence of Global Spatial Autocorrelation 

A final issue to be examined is how the magnitude of global spatial autocor- 
relation affects the distribution of the I* around the sample mean (the global 
Moran’s I), which is used to detect outliers. In contrast to the earlier experi- 
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FIG. 7. Box Plots of Local Moran z-value with Spatial Autocorrelation (n = 42; 10,000 Replica- 
tions) 

ments, the focus is not on Ii for an individual location, but on how the spread of 
the statistics in each sample is affected by the strength of global spatial autocor- 
relation. In Table 3, the average over the 10,000 replications of twice the standard 
deviation around the mean in each replication is listed, as well as the average 
(over the 10,000 replications) number of outliers indicated by using the two 
sigma rule. With increasing global spatial autocorrelation, both the spread and 
the number of “outliers” increases. This implies that in the presence of a high 
degree of spatial autocorrelation, several extreme values of the Ii statistic are 
to be expected as a “normal” result of the heterogeneity induced by a spatial 
autoregressive process. In practice, this is not much different from the usual 
treatment of outliers, and without further evidence, it is not possible to state 
in a rigorous manner which extreme values are to be expected and which are 
unusual observations. However, as an exploratory device, the lack of symmetry 
of the distribution of the Ii around the global I, and/or the presence of very 
large values provides insight into the stability of the indication of global spatial 
association over the sample. 

TABLE 3 
Two-Sigma Rule with Global Spatial Autocorrelation* 

n = 42 n=81 
n 20 Outliers 20 Outliers 

0.0 1.0199 
0.3 1.1171 
0.6 1.3519 
0.9 1.7112 

3 
3 
4 
5 

0.7538 
0.8675 
1.1280 
1.7017 

5 
6 
7 
9 

a. 20 computed as average 20 over 10,000 replications: outliers are median number of observations more than 20 from the mean in 
each sample. 
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6. CONCLUSION 

The general class of local indicators of spatial association suggested in this 
paper serves two main purposes. Firstly, the LISA generalize the idea underly- 
ing the Getis and Ord Gi and Gf statistics to a broad class of measures of local 
spatial association. Secondly, by directly linking the local indicators to a global 
measure of spatial association, the decomposition of the latter into its observa- 
tion-specific components becomes straightforward, thus enabling the assess- 
ment of influential observations and outliers. It is this dual property that distin- 
guishes the class of LISA from existing techniques, such as the Gi and Gf 
statistics and the Moran scatterplot. The LISA presented here are easy to im- 
plement and lend themselves readily to visualization. They thus serve a useful 
purpose in an exploratory analysis of spatial data, potentially indicating local 
spatial clusters and forming the basis for a sensitivity analysis (outliers). While 
the former is more appropriate when no global spatial autocorrelation is pre- 
sent, the latter is particularly useful when there is spatial autocorrelation in 
the data. 

A number of issues remain to be investigated further. The illustration in this 
paper primarily pertained to the local Moran li indices, but the extension to the 
wider class of LISA statistics can be carried out in a straightforward way. From 
both the empirical example and the initial simulation experiments, it follows 
that the null distribution of the local Moran cannot be effectively approximated 
by the normal, at least not for the small sample sizes employed here. Also, it 
seems that higher moments may be necessary in order to obtain a better 
approximation. Furthermore, the uncritical use of the null distribution in the 
presence of global spatial autocorrelation will give incorrect significance levels. 
The problem also pertains to the Gi and Gf statistics and would suggest that a 
test for global spatial autocorrelation should precede the assessment of signifi- 
cant local spatial clusters. However, such a two-pronged strategy raises the issue 
of pretesting and multiple comparisons, and would require an adjustment of the 
significance levels to reflect this. This further complicates the determination of a 
proper significance level for an individual LISA, given the built-in correlatedness 
of measures for adjoining locations. It is clear that some type of bounds procedure 
is needed, but which degree of correction is sufficient still remains to be 
addressed. 

Finally, the conditional randomization approach suggested here seems to pro- 
vide a reliable basis for inference for the LISA, both in the absence and in the 
presence of global spatial autocorrelation. 
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APPENDIX A 

The moments of the local Moran statistic can be derived using the results in 
Cliff and Ord (1981, pp. 42-46). Using (12), the expected value of Ii under the 
randomization hypothesis is 

The value of the expectations term is 

based on equation (2.37) of Cliff and Ord (1981, p. 45). Consequently, the 
expected value of Ii becomes 

with wi as the sum of the row elements, C j  wij. Obviously, in the case a row- 
standardized weights matrix is used, this sum will be one. 
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To obtain the second moment, the following expression must be evaluated: 

for which the following results are important, based on equation (2.39) of Cliff and 
Ord (1981, p. 46): 

E[44]  = (nmi - m4)/(n - 1); 

with m4 = xi G/n  as the fourth moment. The first weights term in the expecta- 
tion consists of the sum of all weights squared, or, wi(2) = zj+, u%~, and the sec- 
ond is twice the sum of the cross products (avoiding idenbcal subscripts), or, 
2Wi(kh) = &+ x h +  wikwih. After combining terms, the second moment is 
found as 

which simplifies somewhat after using bz = m4/m;, to 

Consequently, the variance of Ii is 

Var[Ii] = wq2)(n - b2)/(n - 1) + 2Wi(kh)(2b2 - n)/(n - l)(n - 2) 

-w?/(n- 1) 2 . 




