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ABSTRACT. Standard spatial autoregressive models rely on spatial weight structures
constructed to model dependence among n regions. Ways of parsimoniously modeling the
connectivity among the sample of N = n? origin-destination (OD) pairs that arise in a
closed system of interregional flows has remained a stumbling block. We overcome this
problem by proposing spatial weight structures that model dependence among the N OD
pairs in a fashion consistent with standard spatial autoregressive models. This results in
a family of spatial OD models introduced here that represent an extension of the spatial
regression models described in Anselin (1988).

1. INTRODUCTION

Spatial regression models have served as the workhorse in applied spa-
tial econometric analysis, and the models introduced here can play an impor-
tant role in modeling interregional flows. The focus of this study is to provide
specifics regarding how spatial regression methods can be applied to spatial
interaction models. Work by Porojon (2001) for the case of international trade
flows and Lee and Pace (2004) for retail sales pointed out that residuals from
conventional models were found to exhibit spatial dependence. Others such as
Tiefelsdorf (2003) have noted that assuming independence of individual flows
from origin i to destination j and from any pair of regions to other pairs of re-
gions may be problematical. Nonetheless, empirical work still relies heavily on
the assumption of independence among origin-destination (OD) flows.
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Gravity models have often been used to explain OD flows that arise in fields
such as trade, transportation, and migration. However, the gravity model as-
sumes independence among observations, and this assumption seems heroic for
many fundamentally spatial problems. We extend the traditional gravity model
using a combination of three spatial connectivity matrices for origin, destina-
tion, and origin-to-destination dependence as well as provide new technical
results that greatly simplify maximum-likelihood estimation of the model.

This paper sets forth spatial econometric methods for modeling these gen-
eral data structures that arise in a variety of economic, geography and regional
science research contexts such as international trade flows, migration research,
transportation, network, freight flow analysis, communications and informa-
tion flow research, journey-to-work studies, as well as regional and interre-
gional economic modeling. The term “spatial interaction models” has been used
in the literature to label models that focus on flows between origins and desti-
nations (Sen and Smith, 1995). A large literature on theoretical foundations for
these models in the context of international trade models exist (see Anderson,
1979; Anderson and van Wincoop, 2004). These models rely on a function of the
distance between an origin and destination as well as explanatory variables
pertaining to characteristics of both origin and destination regions. Spatial in-
teraction models assume that using distance as a variable will eradicate the
spatial dependence among the sample OD pairs.

The notion that use of distance functions in conventional spatial interac-
tion models effectively capture spatial dependence in interregional flows has
long been challenged. Griffith (2007) provides an historical review of regional
science literature on this topic in which he credits Curry (1972) as the first to
conceptualize the problem of spatial dependence in flows. Griffith and Jones
(1980, p. 190) in a study of Canadian journey-to-work flows noted that flows
from an origin are “enhanced or diminished in accordance with the propensity
of emissiveness of its neighboring origin locations.” They also stated that flows
associated with a destination are “enhanced or diminished in accordance with
the propensity of attractiveness of its neighboring destination locations.”

In contrast to typical spatial econometric models where the sample involves
n regions, with each region being an observation, these models involve n2 = N
OD pairs with each OD pair being an observation. This type of modeling seeks
to explain variation in the level of flows across the sample of N OD pairs. There
has been widespread recognition of the need for such models in disciplines such
as population migration. Cushing and Poot (2003, p. 317) provide a survey of
migration research in which they state that:

As noted in the Introduction, no one has as yet seriously exploited the potential
of spatial econometrics in the migration literature. This would seem to be
a natural extension for migration research and one with potentially greater
importance at greater levels of geographic disaggregation. A more complete
consideration of the spatial dimension in migration research is one of the key
contributions that regional science can make to this literature.

© 2008, Wiley Periodicals, Inc.
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We introduce maximum-likelihood estimation procedures for these models.
New technical results regarding calculation of log determinants that appear in
the likelihood function greatly facilitate estimation. A family of spatial econo-
metric model specifications is illustrated with a stylized migration example
based on flows for the 48 contiguous U.S. states and the District of Columbia.
The results indicate spatial dependence exists among the OD flows, contrary
to the conventional assumption of independence.

One caveat for the maximum-likelihood method introduced here is that
in cases where a large number of zero flows exist, these methods are not ap-
propriate. Maximum-likelihood estimates require that the dependent variable
vector follow a normal distribution or that it can be suitably transformed to
achieve normality. There are numerous cases where these conditions are met,
for example, the flow of airline passengers between airport nodes in the net-
work where airport city-pair combinations are treated as OD pairs. Traffic net-
works provide another example, and we note that sparse flows measured at a
finer spatial scale that do not meet the requirement of normality will become
denser when measured over longer time periods, making application of these
methods possible. When dealing with count data when the mean count takes
on a large value, transformations to approximate normality are described in
Sen and Smith (1995). For an example of a Poisson model that deals with the
case of a large number of zero flows see LeSage, Fischer and Scherngell (2007),
where spatially structured origin and destination effects parameters are used
to model spatial dependence in this type of setting.

Section 2 introduces the notation, and develops a general gravity model
with spatial dependence. Section 3 sets forth means for estimating the spatial
gravity model that includes some new log-determinant results. The primary
focus here is methodological, but Section 4 presents a stylized illustration using
migration data, and Section 5 concludes with directions for future research.

2. INTERREGIONAL FLOWS IN A SPATIAL REGRESSION CONTEXT

We introduce the notation and conventions used in describing OD flows in
Section 2.1, and discuss modeling these with conventional gravity models with
independent observations in Section 2.2. In Section 2.3 we motivate spatial
dependence in an OD setting. Section 2.4 describes various specifications for
spatial dependence in flows, and spatial econometric model specifications based
on these dependence structures are described in Section 2.5.

Origin-Destination Notation and Ordering

Let Y denote an n by n square matrix of interregional flows from each of
the n origin regions to each of the n destination regions where the n columns
represent different origins and the n rows represent different destinations as
shown in (1). The flows considered here reflect a closed system.

© 2008, Wiley Periodicals, Inc.
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01 09 ()%
dl 01—>d1 02—>d1 On—>d1
(1) d |o1—>dy 02—>dy - on—dhp

dp \o1—>d, 0o2—>d, -+ 0op,—d,

Accordingly, n=1Y v, is an n by 1 vector representing an average of the flows
from all of the n origins to each of the n destinations, where v, is an n by 1 vector
of ones. Similarly, n=1Y', would produce an n by 1 vector that is an average of
flows from all of the n destinations to each of the n origins.

We can produce an N(=n?) by 1 vector of these flows from the flow matrix
in (1) in two ways, one reflecting an origin-centric ordering as in (2), and the
other reflecting a destination-centric ordering as in (3).

A L AC)
1 1 1
n 1 n
(2) . . .
N—-n+1 n 1
N n n,
s 0@ g@d
1 1 1
n n 1
3) : : :
N-n+1 1 n
N n n
The indices [©), I denote the overall index from 1, ..., N for the origin-centric
and destination-centric orderings, while the origin, destination indices o, d go
from 1,...,n. Beginning with a matrix Y whose columns reflect origins and

rows destinations, we obtain the origin-centric ordering with y = vec(Y), and the

© 2008, Wiley Periodicals, Inc.



LESAGE AND PACE: SPATIAL ECONOMETRIC MODELING 945

destination-centric ordering by setting y'® = vec(Y’). These two orderings are
related by the vec-permutation matrix so that Py = y'?, and by the properties
of permutation matrices y = P~1y@ = P'y@ For most of the discussion, we will
focus on the origin-centric ordering where the first n elements in the stacked
vector y reflect flows from origin 1 to all n destinations. The last n elements of
this vector represent flows from origin n to destinations 1 to n.

Gravity Models with Independent Observations

Without loss of generality, let each column of X have a mean of 0 (mean-

differences).

We note that Xy equals v, ® X.

This would repeat the character-
istics of the first region n times to form the first n rows of X, the characteristics
of the second region n times for the next n rows of X, and so on, resulting in
an N by k£ matrix that we label X, = X

We let G represent the n by n matrix of distances between origins
and destinations, and thus g = vec(G) is an N by 1 vector of these distances
from each origin to each destination formed by stacking the columns of the OD
distance matrix into a variable vector (since G is symmetric, g = vec(G’) would
give the same result). Again, without loss of generality let g have a mean of
0, which can be achieved by transforming this vector to deviation from means
form. This results in a regression model of the type shown in (4).!

(@) ¥ = oy + Xalfia + X + Vg + ¢

Some elementary manipulations of the moment matrix can illuminate the
simplicity of gravity models based on the independence assumption for the
case of a square matrix where each origin is also a destination. The algebra

'If one starts with the standard gravity model and applies a log-transformation, the resulting
structural model takes the form of (4) (c.f., equation (6.4) in Sen and Smith, 1995).
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of Kronecker products can be used to form moment matrices without dealing
directly with N by N matrices. Given arbitrary, conformable matrices A, B, C,
then (C' ® A) vec(B) = vec(ABC) (Horn and Johnson, 1991, p. 255, Lemma
4.3.1). Using Z = (w X4 X, g)yields the moment matrix shown in (5).

N 0 0 0
/ 0 nXX 0 XGu

®) ZZ=1y o XX X'Gu,
0 UGX UGX tr(G?)

Due to mean-centering of X and g, many of the entries in (5) are 0. We note
that tr(G?) can be efficiently calculated using v,(G' ® G)i,, where the opera-
tor © refers to elementwise (Hadamard) multiplication. Similarly, Z'y can be
expressed as

(6) Zy=(uwWYyu XY, XY, tr(GY)),

where computing V,(G' ©® Y)i, would be more efficient than ¢r(GY).
The moment matrices can be rewritten to obtain some insights into the
least-squares estimator, 3 = (%)_I(Zﬁ"), for this model.

1 0 0 0
o XX, XGu
77 n n n
N o o XX XGu
n n n
LG'X UG'X tr(GY)
0 = =
n n n n N
Z'y _ (L;Ybn X Y, X Yun tr(GY))
N N n n n n N '

The quantities %G—I:"

& .
and %T)ﬁ( measure the covariance between the ex-

planatory variables and distance. In the case where every origin is also a des-
tination, for any two regions i and j there are two OD pairs: an ij pair and ji
pair. If the explanatory variable value is different for i and j, there will be two
different explanatory variable values associated with the same distance for the
ij and ji OD pairs, and this will also be the case for all n(n — 1)/2 pairs where i #
J. This should result in small covariances between the distance and /explana-
tory variables. We note that sufficiently small values for % GT”“ and %% would
result in a block diagonal Z'Z where the inverse can be obtained block by block.

We can exploit the block diagonal structure that would arise if the ori-
gin, destination, and distance variables exhibit small covariances to produce
an approximate estimate associated with the destination characteristics: Bq =
X'X)"X'[n"1Y,], where (n~1Y 1) represents an average of the flows from all
of the n origins to each of the n destinations. Similarly, an approximate estimate
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of the origin characteristics is: §, = (X’X)"'X'[n~1Y'\], where n~1Y'L represents
an average of flows from all of the n destinations to each of the n origins.

If the covariances between distance and explanatory variables are small,
the approximate least squares estimate of the distance parameter vy is:
tr(GY)/tr(G?) = g'y/g'g. This is the slope parameter estimate of the simple
regression of y on g. Therefore, a low correlation of distance with the other ex-
planatory variables implies that the addition of distance to this model would
improve the fit (and thus possibly affect inference), but not affect estimates
associated with the other explanatory variables.

In conclusion, the square (n? = N) gravity model under the assumption of
independence between origin and destination flows has a very simple struc-
ture that relates average flows to the origin and destination characteristics.
Moreover, distance is likely to have a material effect on the fit, but not on the
estimates associated with the independent variables. The simplicity of the grav-
ity model with independent observations may mean that it cannot account for
the spatial richness of OD flows. To enhance this simple model, we augment it
with richer forms of spatial dependence set forth in Section 2.5.

Spatial Dependence in Local Origin-Destination Flows

Although the gravity model makes an attempt at modeling interdepen-
dence among observations using distance, this may prove inadequate for many
types of flow data where each region might affect its neighbors. For example,
events such as new plant openings, retail outlets, or highway infrastructure,
that occur in one region are thought by regional scientists to exert spatial
spillover effects on neighboring regions. In the case of OD flows neighboring
regions include neighbors to the origin, neighbors to the destination, and per-
haps a link between neighbors of the origin and neighbors of the destination
region.

Before addressing the general case with these forms of dependence, we
develop the simpler case of a local OD model where we consider a single ori-
gin and n destinations or n origins and one destination. By themselves, local
models have their uses. For example, a particular tourist destination might be
interested in explaining the flows from the n origins or a university might wish
to look at the placement of their graduates across n destinations. However, our
main reason to discuss local OD models is to provide a simpler scenario for
motivating spatial dependence. Our extension to the more general case with n?
OD flows is set forth in the next section.

Both types oflocal OD models involve n observations, and thus provide situ-
ations more similar to traditional spatial econometric applications. In these ap-
plications, spatial weight matrices provide a convenient and parsimonious way
to specify spatial dependence among observations. In a typical cross-sectional
model with n regions with one observation per region, the spatial weight ma-
trix labeled W represents an n by n nonnegative, sparse matrix. This matrix
captures dependency relations among the observations (regions). For example,

© 2008, Wiley Periodicals, Inc.
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Wi > O ifregion i is contiguous to region j. Besides contiguity, various measures
of proximity such as cardinal distance (e.g., kilometers), and ordinal distance
(e.g., the 10 closest neighbors) have been used to specify W. By convention,
W;; = 0 to prevent an observation from being defined as a neighbor to itself,
and the matrix W is typically standardized to have row sums of unity.

Given an origin-centric organization of the sample data, a local model for
a single origin would represent an n by 1 vector of flows from a single origin
i to all destinations, j = 1,...,n. The conventional contiguity-based n by n
matrix W would contain positive elements for neighbors to each of the regions
treated as destinations. A specific example would be commuting flows from
the central business district (CBD) region (the origin) to all other regions in
the metropolitan area (the destinations), where our sample might reflect flows
over a period of one month.

We provide two econometric motivations for the use of spatial regression
models that involve spatial lags of the dependent variable. The first motivation
comes from viewing spatial dependence as a long-run equilibrium of an un-
derlying spatiotemporal process and the second motivation shows that omitted
variables that exhibit spatial dependence leads to a model with spatial lags of
both the explanatory and dependent variables.

The first motivation for spatial dependence in cross-sectional flows mea-
sured at a point in time is based on a time-lag relationship describing a dif-
fusion process over space, which we show in (7), where the matrix W reflects
a conventional spatial dependence structure between observations in the n
by 1 vectors y;, y;_1 of cross-sectional observations measuring the dependent
variable at times ¢ and ¢ — 1. For concreteness, these might be commuting
flows from the CBD region to all other metropolitan regions during months ¢
and ¢ — 1. The exogenous matrix W specifies the spatial configuration of the
regions.

(7 ¥ =pWy—1 +XB + &

In (7) we omit the time subscript on the matrix of explanatory variables
X to reflect a situation where the explanatory variables reflecting regional
characteristics that describe regional variation in y change slowly over time,
relative to the change in flows. Continuing with our example of commuting
flows, we might consider a single explanatory variable representing the (resi-
dential) population density of each destination region in the metropolitan area.
This would change slowly given our monthly time frequency. Other candidate
explanatory variables that might explain commuting flows such as the age
composition, employment status, occupational composition of population resid-
ing in each of the metropolitan regions could also be argued to change slowly
over the monthly time frame. The disturbance vector €; obeys the usual con-
stant variance zero covariance assumptions from regression theory, and without
loss of generality can be assumed to follow a normal distribution centered on
Z€ro.

© 2008, Wiley Periodicals, Inc.
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We can use the recursive relation: y; 1 = pWy; 2 + XB + €;_1 implied by
the model in (7) to consider the state of our dynamic system after passage of q
time periods, which is shown in (8).

Ve =pIWiy_g + T+ pW+p?W2 + ... + pIWOXB + u

(8)
u = pqwqet—q—l + pq_lwq_let—q—l + -4 &
The steady-state equilibrium for the dynamic process in (8) can be found
by letting ¢ — oo, and taking the expectation. If pW is such that p?W? — 0,
and I — pW) ' =T+ pW + p2W2 + ...), using E(g;,_,) =0,r =0,...,g — 1, so
that E(w) = 0, leads to (9).2

9) E(y,) = (I —pW)'Xp.

This is the expectation for a spatial autoregressive model that contains
spatial lags of the dependent variable, whose model expression is shown in (10)
and associated data-generating process in (11).

(10) ye = p Wy + XiB + &,
(11) Yy =T —pW)IX;B+T—pW)le,.

Since cross-sectional spatial autoregressive models provide no explicit role
for passage of time, we should interpret these models as reflecting an equilib-
rium outcome or steady state. That is our cross-sectional slice of commuting
flow observations from the CBD to other metropolitan area regions at a single
point in time can viewed as sampling a dynamic system in steady state. This
also has implications for how we should interpret the impact of changes in the
explanatory variables of these models on the flows. The model literally states
that a change in X will lead to a simultaneous impact on commuting flows to all
(destination) regions in the metropolitan area represented by the cross-section
y. However, it seems more intuitive to view changes in X as setting in motion
a series of changes that will lead to a new steady-state equilibrium at some
future unknown point in time.? Using our commuting flow example, the model
could be used to quantify how changes in the current population density of
the regions would impact commuting flows from the CBD to all (destination)
regions in the metropolitan area in the long-run.

The second motivation for the presence of spatial lags in flows is based on an
omitted variables argument. It is difficult to find sample data that adequately
reflects amenities, social milieus, entrepreneurial spirit, and a host of other
influences that may be important for a particular flow modeling problem. For
the case of our commuting flow example, an omitted variable might be school
quality of each destination region.

2The properties ascribed to the term pW hold for conventional spatial dependence structures,
as well as the spatial dependence structure we will introduce for the flow model.

3Since our model is based on cross-sectional observations, it is uninformative about the time
dimension.
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A nonspatial regression relationship is shown in (12) where we assume the
existence of a single omitted variable vector z. For simplicity we also assume
a single vector x, without loss of generality (see Pace and LeSage (2008) for a
more general development). The variable x included in our model of commuting
flows would be residential population density of each region in the metropolitan
area.

(12) y=xB+z2,
(13) z=pWz+u,
(14) u=xy-+Ee.

We model the omitted variable z as exhibiting spatial dependence which we
represent using a spatial autoregressive process consisting of the scalar spatial
dependence parameter p and the n by n spatial weight matrix W as shown
in (13). Expression (14) indicates that the omitted and included variables are
correlated when the scalar parameter vy # 0, which is the typical assumption
made in the omitted variables literature. In the case of our commuting flow
example, unobservable school quality z would be correlated with residential
population density x of the metropolitan regions. The spatial process in (13)
assigned to govern the omitted variable (school quality) suggests that school
quality in each region of our metropolitan area is related to that of neighboring
regions. For example, suburban regions school quality would be similar to that
of neighboring regions as would be school quality in central city regions.

The assumption of spatial dependence in the omitted explanatory variable
z is consistent with the findings by Porojon (2001) as well as Lee and Pace (2004)
that residuals from conventional flow models were found to exhibit spatial de-
pendence. We will show that an omitted variable correlated with the included
variable x in the presence of spatial dependence leads to a model that contains a
spatial lag of the dependent variable. Under these circumstances, omitting the
spatial lag of the dependent variable as is done in conventional gravity models
will lead to bias in the coefficient estimates. This provides a purely econometric
motivation for use of a spatial lag model as protection against bias arising from
possible omitted variables.

Using the relations in (12)—(14) we arrive at the data-generating process
in (15).

(15) y=xB+T—pW) lay + T - pW) le.

Transforming the left- and right-hand sides of (15) by (I — pW) yields a trans-
formed DGP in (16) with independent, identically distributed (iid) disturbances.

(16) y=pWy+x(B+v)+ Wx(—pB)+c¢.

Note, the transformed DGP in (16) contains a spatial lag of the dependent vari-
able (Wy) as well as the explanatory variable (Wx). In the case of our commuting
flow example, Wy represents an average of flows from the CBD to neighboring
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destination regions, and Wx is the average population density of regions neigh-
boring the destinations.

Given the DGP (15) and iid transformation of the DGP in (16), estimating
the model (17) will yield estimates for large samples so that ; = B + vy and
B2 = —pB.
a7) y=pWy +xB; + WxPBg + €.

Let 31, B2, and p represent consistent estimates of 81, B2 and p so that for suf-
ficiently large samples the estimates converge to the underlying parameters.
Given p, B1, and Bo, B = P2(p)~1, 9 = B1 — B. This result suggests that if we are
interested in the impact of population density on commuting flows from the
CBD in the presence of an omitted variable such as school quality that is corre-
lated with population density, we should rely on a model that includes a spatial
lag of both the dependent and independent variable. This would allow us to pro-
duce consistent estimates of the model parameters and draw valid inferences
about the impact of changes in population density on commuting flows from
the CBD, in the long-run steady-state equilibrium sense described for our first

example.
When the parameter y = 0 so the included and excluded variables are
not correlated, and the restriction By = —pP; holds, a spatial error model

(SEM)emerges: (y — pWy) = (x — pWx)B + €. This suggests an empirical test
for the presence of omitted variables that are correlated with the included vari-
ables. A likelihood-ratio (LR) test based on log-likelihood function values from
the error model and the spatial lag model tests the restriction By = —pp; for
the coefficients on x and Wx. Of course, this restriction can only hold when the
parameter vy = 0, indicating no omitted variables exist that are correlated with
those included in the model.*

If the restriction (82 = —p 1) is consistent with the sample data, then least
squares estimates of the regression parameters (which ignore the spatial lag
term and the spatial lag of the explanatory variable) are unbiased (Anselin,
1988). In this situation, the omitted school quality variable z is uncorrelated
with the included population density variable x, and the relation between popu-
lation density x and the spatial lag of population density Wx is such that spatial
dependence arises only in the disturbance term in the model. However, least
squares estimates would produce inconsistent inferential statistics unless p =
0. That is, measures of dispersion for the coefficient estimates would be wrong,
even in large samples.

There is an asymmetric risk that arises with regard to incorrect model spec-
ification that also provides a motivation for use of a model that includes both
spatial lags of the dependent and independent variables. To see this, consider

4We should note that a test of the restriction might show this to be inconsistent with the
sample data even when y = 0, so failing the test would not necessarily imply the presence of omit-
ted variables. For example, failing the test could arise from spatial dependence in the dependent
variable, requiring a spatial lag in the model.
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the situation where p = 0. In this situation, including spatial lags of the ex-
planatory and dependent variables will reduce estimation efficiency, but will
not lead to bias. For sufficiently large samples, the problems arising from bias
will dominate those arising from inefficiency. In contrast, when p # 0 omitting
a spatial lag of the dependent variable will result in biased and inconsistent
estimates. This suggests a strategy where we might rely on a model that in-
cludes spatial lags of the dependent and explanatory variables even if this
seems counter to the underlying theory behind our model. This result is simi-
lar in spirit to the use of lagged dependent variables in time-series models to
account for omitted variables. While this might not be the optimal solution to
the problem, it provides a practical approach to the problem posed by omitted
variables.

Our approach augments theoretical models developed in Fingleton and
Loépez-Bazo (2006), and Ertur and Koch (2007, 2008) that directly include spa-
tial dependence structures in underlying theoretical economic relationships,
which also give rise to regression models that contain spatial lags of the de-
pendent variable. In the case of Ertur and Koch (2007), the model deals with
knowledge flows, and Behrens, Ertur and Koch (2008) provide a theoretical
model that gives rise to spatial lags in the context of international trade flows.
A notable contrast of our development and these is that we do not assume at
the outset any dependence in the vector of flows y. Many regional scientists,
particularly those involved in migration modeling, object to assuming spatial
dependence in migration flows, as this seems contrary to current theoretical
models motivated by utility considerations. Our starting point is consistent
with theoretical models that posit a nonspatial theoretical relationship under-
lying migration flows.

Specifying Spatial Dependence in Flows

Having motivated situations in which spatial lags of the dependent vari-
able might be useful when modeling OD flows, we turn attention to specification
of the spatial structure of dependence for these models. We begin with a typical
row-standardized n by n first-order contiguity or m nearest neighbors weight
matrix W that reflects relations among the n regions. Referring to (2), Y; con-
tains the OD flows for the first origin and thus WY provides the spatial average
around each destination i = 1,...,n holding the origin constant. This can be
repeated n times leading to a Kronecker product representation I, @ W. We
label this N by N row-standardized spatial weight matrix Wy, shown in (18),
where 0,, represents an n by n matrix of zeros.

W o0, ... 0,
0, W o0,
(18) W, =
0, - 0,
0, 0, W
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The spatial weight matrix Wy will be used to capture destination-based
dependence in the gravity model. This type of dependence reflects the intuition
that forces leading to flows from an origin to a destination may create similar
flows to nearby or neighboring destinations. Using the spatial weight matrix
W, =1, ® W we can model this type of dependence. The N by N spatial weight
matrix Wy reflects connectivity relations between an origin and neighbors of the
destination. This matrix in conjunction with the vector y produces a spatial lag
vector Wyy that formally captures the notion of Griffith and Jones (1980). They
note that flows associated with a destination are “enhanced or diminished in
accordance with the propensity of attractiveness of its neighboring destination
locations.”®

Reasoning similar to that used in developing the matrix W, suggests that
W (Y'); provides spatial averages around each origin for the first destination.
Doing this for all destinations yields WY'. Since vec(WY') = (W ® I,)vec(Y),
we can also create an N by N row-standardized spatial weight matrix that we
label W, = W ® I,,. Using this matrix to form a spatial lag of the dependent
variable, W,y captures origin-based spatial dependence relations using an av-
erage of flows from neighbors to each origin region to each of the destinations.
Intuitively, forces leading to flows from any origin to a particular destination
region may create similar flows from neighbors to this origin to the same desti-
nation, and the spatial lag W,y captures this effect. This formally captures the
point of Griffith and Jones (1980) that flows from an origin are “enhanced or
diminished in accordance with the propensity of emissiveness of its neighboring
origin locations.”®

We can use the spatial weight matrices Wy, W, in conjunction with scalar
parameters p 4, p, that indicate the strength of dependence to replace our pre-
vious p W specification for the case where we had only n observations contain-
ing local flow data. The new spatial structure p ;W reflects destination-based
dependence and p,W, captures origin-based dependence. Since both types of
dependence are likely to exist in the context of OD flows, this suggest a model
shown in (19).7

5They also discuss formation of spatial lags for these models without using the Kronecker
product relations set forth here.

5We note that the vec-permutation matrix P introduced previously in Section 2.1 can be
used to translate between origin-centric and destination-centric ordering of the sample data. For
example, if we adopted the destination-centric ordering (as opposed to the origin-centric ordering
we use in the text), specification of the destination weight matrix would be W; = W ® I,,. This can
be seen using the relation: P’'W,P =P’ (I, ® W)P, to translate the origin-centric destination weight
matrix W, to the destination-centric ordering scheme. Rules for multiplication using Kronecker
products allow us to simplify the expression P'(I, ® W)P, using corollary 4.3.10 in Horn and Johnson
(1991, p. 290), so that P'(I, ® WP =W ® I,,, and thus W; = W ® I,,, under the destination-centric
ordering of the sample data.

"The time lag motivation for the existence of spatial lags of the dependent variable could be
developed by starting with: y; = paWay: -1 + poWo¥ii1 — papoWaWoy: 1 + XB + €,. Similarly, one
could use an omitted variable development to motivate the use of spatial lags of flows.
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(19) (In — paWa)In — poWo)y = XB +&.

Expanding the product Ay — paWa)Iny — poWo) = In — paWg — poW, +
paPoWa -Wo=Iny—pgWs—po,W, — pu,W,,leads us to consider a third type of
dependence reflected in the product W, =W, - Wy =TI, W) - (WRIL,)=W®
W.8 This spatial weight matrix reflects an average of flows from neighbors to
the origin to neighbors of the destination, which we label origin-to-destination
dependence to distinguish it from origin dependence and destination depen-
dence.

The model in (19) could be viewed as a successive spatial filter. Remarkably,
one can filter successively by Iy — paWq), and (Iy — p,W,) or vice-versa and
obtain the same results. The order does not matter because the cross-product
of WRI,and I, ® Wis W ® W, which is the same as the cross-product of I, ®
W and W ® I, via the mixed-product rule for Kronecker products. Therefore, in
an OD context a successive spatial filter that removes destination dependence
first and origin dependence second yields the same results as removing origin
dependence first and destination dependence second.

Spatial Model Specifications for Origin-Destination Flows
We propose the following general spatial autoregressive model that takes

into account origin, destination, and origin-to-destination dependence.

20) 3= daWay + A Woy + puiWagy + aty + X + X8 + g +&.

This general model leads to a number of more specific models of interest.
We set forth nine different models that result from various restrictions on the
parameters p;, I = d, o, w. Since the statistical theory for testing parameter
restrictions in a maximum-likelihood setting using LR tests is well developed
(Cressie 1993; Stein 1999), this seems desirable from an applied specification
search viewpoint.

Model #1. The restriction: pg = p, = p» = 0, produces the nonspatial model
where no spatial autoregressive dependence exists.

Model #2. The restriction: p, = p,, = 0, results in a model based on a single
weight matrix W, reflecting destination autoregressive spatial de-
pendence.

Model #3. The restriction: pg = p,, = 0, produces a sibling model based on a
single weight matrix W,/ for spatial dependence at the origins.

Model #4. The restriction: pg = p, = 0, creates another single weight matrix
model containing only. Mlz reflecting dependence based on interac-
tion between origin and destination neighbors.

8We note that this specification implies a restriction that p, = —p,p4, but this restriction
need not be enforced in applied work. Of course, restrictions on the values of the scalar dependence
parameters pg, po, p» Mmust be imposed to ensure stationarity in the case where p, is free of the
restriction.

© 2008, Wiley Periodicals, Inc.


amaral


amaral


amaral


amaral



LESAGE AND PACE: SPATIAL ECONOMETRIC MODELING 955

Model #5. The restriction: pg = p,, and p,, = 0, results in a model based on a
single weight matrix constructed using 0.5(W4 + W,) with a param-
eter equal to 2p 4y = 2p,. This reflects a lack of separability between
the impacts of origin and destination dependence relations in favor
of a cumulative impact.

Model #6. The restriction: pg =p, = p v, produces another single weight matrix
model based on (1/3)(Wy; + W, + W) with p = (8p, = 3pg = 3pw)-
This reflects a lack of separability between the impacts of origin,
destination and origin-to-destination interaction effects in favor of
a cumulative impact.

Model #7. The restriction: p,, = 0, leads to a model with separable origin and
destination autoregressive dependence embodied in the two weight
matrices Wy and W, while ruling out dependence between neigh-
bors of the origin and destination locations that would be captured
by W,,.

Model #8. The restriction: p,, = —p 4p, results in a successive filtering or model
involving both origin Wy, and destination W, dependence as well as
product separable interaction W,,, constrained to reflect the filter
(AN —paWa)In —poWo) =IN—poWo) Iy —paWa) =In — paWa —
p oWo + Pap oWu).

Model #9. The unrestricted model shown in (20) involves three matrices Wy,
W,, and W, which yields the ninth member of the family of models.
Appropriate restrictions onp 4, p,, and p ,, can thus produce the other
more specialized models.

An addition to the family of models arises if we define X = (X WX). In this
case we have a model that Anselin (1988) labeled the spatial Durbin model
(SDM), which includes a spatial lag of the explanatory variables matrix. As
noted in Section 2.3, this model nests the SEM as a special case. A LR test of
the error model against the SDM provides a test for the presence of omitted
variables that are correlated with the included variables. The estimation pro-
cedures we set forth in the next section use the matrix X for simplicity, but
replacing X by X would allow one to apply the same procedures to the case of
the SDM.

3. ESTIMATION OF SPATIAL FLOW MODELS

The likelihood provides the starting point for both maximum likelihood
and Bayesian estimation. We note that the log-likelihood function for the model
specifications concentrated with respect to the parameters § and o will take
the form:

N
(21) LnL(pd» Po> pw) - C + 1n|IN - Pdwd - powo - waw| - EIH(S(Pd, Po> pw))»

where S(pg, po, pw) represents the sum of squared errors expressed as a func-
tion of the scalar parameters p;, i = d, 0, w alone after concentrating out the
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parameters B, o, and C denotes a constant not depending on p; (see LeSage
and Pace, 2004).

The log-determinant of a matrix plays an important role in both maximum
likelihood and Bayesian estimation of transformed random variables. Specif-
ically, the log-determinant ensures that the transformed continuous random
variable has a proper density. Otherwise, multiplication of the dependent vari-
able by a transformation such as eI, where € is a small positive number, would
reduce the magnitude of the estimation residuals to a negligible level. The log-
determinant term serves as a penalty to prevent such pathological transforma-
tions from obtaining an advantage in estimation. Consequently, the likelihood
is invariant to such scalings.

Standard algorithms for maximum likelihood, Bayesian or generalized
method of moments estimation of the spatial econometric OD interregional flow
models become difficult as the number of observations increases. For example,
use of an OD flow matrix for the sample of approximately 3100 US counties can
yield sparse spatial weight matrices of dimension N by N where N = 9,610,000.
Maximum-likelihood and Bayesian estimation both require calculation of the
log-determinant for the N by N matrix Iy — paWg — poWo — pwWu). Special-
ized approaches to calculating log-determinants of very large matrices have
been proposed by Pace and LeSage (2004), Barry and Pace (1999), Smirnov and
Anselin (2001), Griffith (1992, 2004), and Griffith and Sone (1995). However,
more efficient approaches exist that can exploit the special structure of matrices
like Wy=L, W, W, =WQI,andW, =W, - W; =W ® W. The following sec-
tions examine feasible means of computing estimates, sum-of-squared errors,
and log-determinants used in calculating the log-likelihood.

Estimates and Moments

As the number of origins and destinations rises, difficulties in implemen-
tation of OD models increase. In particular, creating and storing the N by £
dense matrices Xy and X, create computer memory problems for large n, and
the same problem arises for the N by N sparse matrices Wy, W, and W,,. We
demonstrate how the unique structure of the OD model can be exploited to
allow estimation and inference for large data sets. In many cases straightfor-
ward calculations of quantities such as X';Xy that would require O(Nk?) can
be reduced to O(INk?) by exploiting the unique structure of the problem. This
means that the benefits from exploiting the special structure rise linearly with
n. In addition, an efficient formulation of the estimation problem allows many
of the calculations to be performed once, with subsequent updates to important
quantities such as the sum-of-squared errors requiring trivial computational
time.

First, implementation of OD models does not require formation of the N by
N matrices Wy, W, or W,,. Since Wgy = (I @ W) vec(Y), then Wy = vec(WY)
using the relation, (C' ® A)vec(B) = vec(ABC). Similarly, W,y = vec(YW’),
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and W,y = vec(WYW’). We use these forms to rewrite the unrestricted model
from (20).

(22) vec(Y) — pg vec(WY) — p, vec(YW') — p,, vec(WYW') = ZB + vec(E).

The overall left-hand side of (22) is a linear combination of four component de-
pendent variables. Therefore, the overall parameter estimate is a linear com-
bination of four separate terms that we label ® = (Z'Z) 1Z' vec(F*(Y)), where
F®(Y)equals Y, WY, YW or WYW whent=1,...,4. The overall parameter es-
timate becomes B(t) = BV B? B3 BW)r(p)wheret(p)=(1 —pg —po —puw)-

The independent variable moment matrix Z'Z has the simple form in (5)
from the discussion of the least-squares model. The cross-moments associated
with the independent and dependent variables are shown in (23).

(23)  Z vec(FO(Y)) = (LFPY, XFOY)n, XFOY), (G oFOY),).

When ¢ = 1, the expression in (23) reduces to that in (6), and the estimates
reduce to those from the independent gravity model #1. Given B® for t =
1,...,4, one can form the matrices of residuals E® by substituting the es-
tlmated parameters into Equation (24), where the overall residual matrix is
E E(l) _ pdE(Z) — Po E(3) — Pw E(4)

(24) EY = FOY) - a"uy, — X7y, — w(BYX - 99G.

We wish to introduce the cross-product matrix of the various component re-
siduals, Q, where Q;; =tr(EVEY),i=1,...,4,j=1,...,4. Alternatively,
Q;; = ,(EY @ EV)y,, and the sum-of-squared residuals for the OD model be-
come S(p) =1(p)Q7(p). Consequently, recomputing S (p) for any given vector of
p values, 7(p), requires a small number of operations that do not depend on n or
k. This permits rapid optimization of the likelihood function and acceleration
of Bayesian Markov Chain Monte Carlo (MCMC) estimation techniques.

Log-Determinants for a Single Weight Matrix

Models #2 through #6 from the family of nine models use a single weight
matrix, denoted here by W. The concentrated log-likelihood (21) for these mod-
els would contain the term log|Iy — pW,|, which would require O(N?) = O(n%)
calculations using conventional approaches. However, the structure of the OD
problem allows efficient techniques that require O(n) calculations for evaluat-
ing the log-determinant. The log-determinant of the transformation Iy — pW;
is the trace of the matrix logarithm of the transformation, and the Taylor series
expansion of this has a simple form for the positive definite matrix transforma-
tion Iy — p Wy, shown in (25).

(25) In Iy — pW,| = tr (In(Iy — pWy)) = — Z s)
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For the case of single destination or origin weight matrices, Wy =1, @ W
or W, = W ® I, which arises in models #2 and #3. Let W, s = d, 0, and note:

(26) tr(W.) =tr(I, @ W) = tr(L) - tr(W') = n - tr(W"),
and thus the trace of a square matrix of order N is simplified to a scalar (n)
times a trace involving the n by n square matrix W.

o0 tt Wt
(27) In|ly — pW| = —nZL(s)

t=1

=nln|L, — pW]|.

Summarizing, for the case of a single spatial weight matrix Wy, s = d, o,
users can employ algorithms for computing the log-determinant of an n by n
matrix In|I, — pW)|, when working with a vector of N OD flows. For the ear-
lier example of n = 3,100 US counties and N = 9,610,000, we can solve these
estimation problems in a matter of seconds on desktop computers when us-
ing computationally efficient sparse algorithms for the n by n log-determinant
portion of the problem (see LeSage and Pace, 2004).

Log-determinants for the Successive Filtering Model

For the successive spatial filtering model specification in model #8 the order
of transformation of the dependent variable does not matter since:

(28) Iy — paWa) (v — poWo) = (In — poWo) (In — paWa) -

The log-determinant term appearing in the concentrated likelihood (21) takes
the simple expression in (29), because the log-determinant of a product is the
sum of the log-determinants.

(29) In |(IN — ded) (IN — powo)| =nln I, — de| +nln I, — pOW|.

Log-determinants for Combinations of Weight Matrices

As in the case of single spatial weights from Section 3.2, the log-
determinant required for maximum-likelihood estimation of models with more
general combinations of weight matrices can be calculated using only n by n
matrices rather than the large N by N matrices.

Drawing on the earlier discussion surrounding (27), the estimation chal-
lenge for the case of the most general OD model #9 (shown in (20)), with all
three parameters pgy, p, and p, unrestricted is to efficiently compute tr(Wtf)

for¢ =1,...,m, where m is the largest moment computed, and W, is defined
in (30).
(30) Wi =pi(I,@W)+po(WRI,) + p,(WRW).

The case of tr(W ¢) where ¢ = 1is immediate, and equals zero since tr(W) =
0. The case of tr(W?c) is slightly more challenging as shown in (31).
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(31) W5 =pi(L, @ W?) + p2(W? @ L,) + p2(W? @ W?)
+202po(W @ W) + 20,0, (W2 @ W) 4 2pgp,(W @ W?),

(32)  tr(W3%) =pin-tr(W?) + pZn - tr(W?) + p2tr(W?)?
+2papotr(W)2 + 20,0, tr(WEr(W) + 2pap ., tr(W)tr(W2).

For the quadratic, there are nine possible terms and six of these are unique.
Note, tr(W?) is the highest-order term involved in calculating the expression
tr(sz). Extrapolating, computations of tr(Wtf) only require computing tr(W?)
based on the n by n weight matrix W, a much less demanding task.

Other than computing ¢r(W!), none of these computations are dependent
on n, so the time required does not depend on the number of origins or desti-
nations.? For small n or ¢ calculating the exact tr(W?) requires little time. For
large n, tr(W*) can be approximated as in Barry and Pace (1999) to any desired
accuracy using an O(n) algorithm. However, the number of terms in the expan-
sion of tr(W%,) does rise quickly with ¢, and this poses the main computational
challenge. However, we have done this for m = 16 without too much difficulty.

Given the m moments and the conditions on W, it is simple to calculate a
relatively short interval containing the log-determinant as shown in (33).

m tr(W) m_ir(W) < tr(W7%)
o -3 zln|IN—wf|z—(tzlff+tzlff.
= = =m+

Given previous assumptions on W, the principal eigenvalue of W is less than 1
in magnitude. Using similar reasoning, Pace and LeSage (2002) show that the
moments tr(W"}) must monotonically decline when ¢ > 1 for matrices W that
are similar to symmetric matrices, and this sets up the bounds. The interval is
narrow provided the last term in parentheses in (33) is reasonably small, and
this will be revealed during the actual computations.

Summarizing, potential computational problems that might plague esti-
mation for models involving N observations on OD flows have been eliminated
by reducing the troublesome log-determinant calculation to one involving only
traces of n by n matrices.

9We have focused on estimating or computing ¢r(W') as opposed to other methods for the
calculation of the log-determinant term since this can be done in O(n) time. However, one could
employ eigenvalues to compute the log-determinant using some of the useful Kronecker product
properties of eigenvalues and determinants. Assuming the spectral decomposition of W exists so
that W = VDV, \; = D;;, and w = vy — paty @ N — poA @ v, + pu,A @ A, In|I — W/| equals
Zfil In(w;). Note, computing eigenvalues requires O(n®) computations and the summation requires
O(n?) computations. However, this is still small relative to calculating the eigenvalues of W ; which
would require O(n®) calculations.
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4. AN APPLIED ILLUSTRATION USING STATE-LEVEL POPULATION
MIGRATION FLOWS

We use state-level population migration flows to provide a stylized illus-
tration of the family of OD spatial econometric models. Specifically, fF#eimodel
state-to-state flows (for the population 5 years and over) over the period from
1995 to 2000, using 1990 Census characteristics of the states. These flows
were all nonzero, and a log transformation produced a dependent variable
vector that was nearly normal, with slightly fatter tails. In addition we use
two explanatory variables that were available for 1995, the state population
in 1995 and the state unemployment rate in 1995. These data are available
from the Census 2000 Special Reports.!? The flow matrix was transformed us-
ing log(vec(Y)) which produces a single cross-sectional vector representing the
(logged) state-to-state migration flows over the five-year period from 1995 to
2000.

The sample was restricted to the 48 contiguous states plus the District
of Columbia resulting in n = 49 and N = 2,401 observations. The flows of
population within each state (those on the main diagonal of the flow matrix)
were not set to zero as is often done when attempting to model interregional
flows (see Tiefelsdorf, 2003 and Fischer et al., 2006). Variables such as Wgy
represent local averages of the dependent variable that can aid in fitting the
data. Setting some of the elements of y to zero defeats the purpose of using local
averages.

We created a separate model for flows from the main diagonal of the flow
matrix representing intrastate migration. This was done by setting all ele-
ments of the covariate matrices Xy, X, corresponding to the main diagonal of
the flow matrix (flows within each state) to zero. This prevents these variables
from entering the interregional migration flow model, forcing the nonzero ob-
servations in the explanatory variable matrices Xy, X, to explain variation in
the between state or interregional flows. The intraregional model consisted of
additional explanatory variables: state population in 1995, state area, the un-
employment rate in 1995, and the proportion of state employment in farming.
Only 49 observations for these four variables were used, those corresponding to
the diagonal of the flow matrix, with the remaining elements of these variable
vectors set to zero. These four N by 1 vectors were added as columns to the ex-
planatory variables matrix. They will be used to explain intrastate migration
flows. Intuitively, we would expect more intrastate migration for states with
larger population and area, and we would expect less intrastate migration for
states with more farming employment. The unemployment rate in 1995 might
also lead to intrastate migration. Of course, one could devise a richer model for
within-state migration flows, but typically these models focus on factors that
explain between state migration flows.

©The data represent sample information. For confidentiality protection, sampling error,
nonsampling error, and definitions, see census.gov/prod/cen2000/doc/sf3.pdf.
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TABLE 1: Variables Used in the Model

Variable name Description
y Log (interstate and intrastate migration flows 1995-2000)
Population 1995 log (state population in 1995)
Area Log (state area)
College Proportion of population > age 25, college degree as highest
Born in state Proportion of population > age 5 born in the state in 1990
Unemployment  Unemployment rate in 1995
rate 1995
Mortgage Log (median mortgage costs in 1990)
Executive Proportion of employment in executive and managerial occupations
Sales Proportion of employment in sales occupations
Local Govt. Proportion of employment in local government
State Govt. Proportion of employment in state government
Federal Govt. Proportion of employment in federal government
Farming Proportion of employment in farming
Distance Log (distance between origin and destination state centroids)

Use of the separate model for intraregional migration flows should down-
weight the impact of the large values on the main diagonal of the flow matrix,
preventing them from exerting undue impact on the resulting estimates for 34,
B,, which are typically the focus of interest in these models.

Explanatory variables for the matrices Xy, X, for each state were taken
from the 1990 Census, with the exception of the 1995 population and unem-
ployment rate variables.!! These variables are defined in Table 1. If one is
interested in the partial derivative impact on flows arising from a change
in say the rth destination variable Xy, this takes the form: dy/0Xy = (Iy —
paWaq — poWo — puw W) L(InBar), where Bg- is the coefficient estimate associ-
ated with the rth destination variable and p;,i = d, 0, w are estimates for the
dependence parameters. See Pace and LeSage (2008) for a detailed discussion
of this issue as well as scalar summary measures based on an average of the
elements in the N by N matrix of partial derivative impacts. In the discussion
that follows, it is important to note that the average elements of the matrix
(In — paWa — poW, — p W)y for our model were positive, so the direction
of impact on flows from changing the explanatory variables is determined by
the sign of the coefficient estimates B4, B,. Therefore, interpretation of positive
coefficient estimates B4 in this model are that an increase in the associated
variable X; would correspond to increased destination migration flows. Simi-
larly, for the case of positive B, estimates, increasing values of the associated
variables in X, would lead to increased flows at the origins.

HUse of 1995 population and unemployment rate variables might introduce endogeneity,
but our application is more illustrative than substantive in nature.
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TABLE 2: Log Likelihoods for Alternative Models

Log LR test versus Critical Value
Model Likelihood Model 9 (o = 0.05)
Model 9: pg4, po, pw» unrestricted —-17.82
Model 7:p,, =0 —242.13 448.63 x2(1) = 3.84
Model 8: p,, = —pa - po —245.10 454.57 x2(1) = 3.84
Model 5: pg =po, pw =0 —247.87 460.11 x2(2) = 5.99
Model 2: p, =p, =0 —434.13 832.63 x%(2)=5.99
Model 6: pg=po=pw —480.02 924.39 x2(2) =5.99
Model 3: py=0,p, =0 —546.86 1,058.08 x2(2) = 5.99
Model 4: p;=0,p, =0 —791.36 1,547.09 x2(2) = 5.99
Model 1: p4=0,p,=0,p, =0 —-1,698.13 3,360.63 x2(3) = 7.82

For example, higher mortgage costs at the origin should increase migration
flows away from origin states and decrease flows to destination states suggest-
ing B, > 0 and Bg < 0. We might expect a higher proportion of population born
in the state to reduce migration flows at both the origin and destination. This is
because states with a higher proportion of population born in the state demon-
strate a long-term propensity to remain rather than migrate, and it may also
signal past low attractiveness to in-migrants. In contrast, a higher proportion
of population with college degrees might increase flows at both origins and des-
tinations, since college graduates might be more mobile at origins and act as
a attractive force at destinations. In addition to the variables included in the
matrices Xy, X,, the log of distance from each origin to each destination was
included in the model, along with a constant term and the variables included
to model intrastate migration flows.2

The family of nine model specifications described in Section 3 were esti-
mated using maximum-likelihood methods with a numerical Hessian approach
used to compute estimates of dispersion and ¢-statistics. The log-likelihood func-
tion values for the family of nine models are shown in Table 2, ordered from
high to low, along with a LR test of the restrictions imposed by each model ver-
sus the unrestricted model. It is clear from the table that Model #9 containing
separate spatial weight matrices for the origin and destination and no restric-
tions on the parameters p 4, po, pw dominates all other models. The second-best
model (Model #7) also contains spatial lags involving both W; and W, matrices,
with p , restricted to be zero, and the third-best model (Model #8) also contains
separate origin and destination spatial weight matrices. The next best model
(Model #5) based on the sum of the destination and origin spatial weight ma-
trices (Wy + W,), with p, restricted to zero, has a likelihood function value

2An anonymous reviewer suggested there is some debate in the literature concerning
whether distance should be transformed using logs. We leave this as an issue for further research
regarding interstate migration modeling.
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that is significantly different from Model #7, based on separate Wy, W,, with
pw restricted to zero.13

From this we conclude that models based on a single weight matrix, ei-
ther Wy, W,, W, exhibit significantly lower likelihoods than models based on
separate weight structures involving W, and W,,. This would seem to support
the notion that both origin and destination dependence/connectivity informa-
tion is important. The LR test clearly rejects least-squares that ignores spatial
dependence in the migration flows.

We estimated the SDM and SEM for the case of the most general unre-
stricted models that contain W;, W,, W,,. The results indicated a log-likelihood
function value for the SDM that was 129.51 higher than the SEM. Twice this
value equals 259.02, so a LR test of the parameter restrictions allows us to re-
ject the SEM model in favor of the SDM model. The 99 percent critical value for
the chi-squared statistic with 13 degrees of freedom (which equals the number
of parameter restrictions) is 27.7. We also note that a test of the SDM model
versus the restrictions implied by the spatial lag (SAR) model rejected the SAR
model in favor of the SDM. Despite this, we rely on the SAR model in our applied
illustration for brevity.

Table 3 presents estimates from least-squares and the unrestricted spa-
tial Model #9 for comparison. The estimates for p; = 0.4581 and p, = 0.5175,
indicate spatial dependence of almost equal importance between neighbors to
the origin and neighbors to the destination. As indicated above, the estimate
for p,, = —0.3863 is not consistent with the restriction p,, = —pg4 - po, and dif-
fers significantly from zero, suggesting that origin-to-destination dependence
specified by the weight matrix W, is also important.

In Table 3, variables included to model intrastate migration flows are la-
beled OD_pop95, OD _area, OD_urate, OD_farming, with variables from the ma-
trix Xy labeled with D_ preceding the variable name and those from X, indicated
by the symbol O_.

In terms of the parameter estimates, distance is negative and significant
in both least-squares and spatial models, but the spatial model that includes
spatial lags of the dependent variable shows a decrease to nearly one-fourth
in the magnitude of this coefficient estimate. However, a direct comparison of
the magnitudes of the coefficients from least-squares and the spatial model is
not valid. For least-squares the coefficients for the rth explanatory variable
x, represent dy/d,,, whereas those from the spatial lag model do not. For the
spatial lag model partial derivative impacts arising from a change in the rth
explanatory variable involve an N by N matrix inverse as noted earlier.

In Table 3, the least-squares estimates are often larger in magnitude than
those from the spatial model. For example, spatial model estimates for D_pop95,
and D_area are around one-half of those from least-squares. As already noted,

13Using a LR test, —2[LR(#5) — LR(#7)] = 11.4800, which exceeds the critical value for x 2(1) =
3.84. Model #5 has one additional restriction relative to Model #7, so the degrees of freedom for the
LR testis 1.
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TABLE 3: Estimates from Least-squares and the Unrestricted
Spatial Model 9

Least-Squares Spatial Model

Variable Coefficient t-statistic(plevel) Coefficient t-statistic(plevel)
Constant —12.5281 —8.21 (0.0000) —5.8195 —15.27 (0.0000)
D_pop95 0.9281 38.85 (0.0000) 0.4296 22.88 (0.0000)
D_area 0.2273 12.66 (0.0000) 0.0868 7.14 (0.0000)
D_college 8.5537 7.89 (0.0000) 4.5691 6.20 (0.0000)
D_borninstate —-2.9131 —22.10 (0.0000) —1.0983 —11.65 (0.0000)
D_urate95 —0.5264 —10.55 (0.0000) —0.1883 —5.67 (0.0000)
D_mortgage —0.5958 —4.66 (0.0000) —0.4149 —5.12 (0.0000)
D_exec —0.4993 —1.76 (0.0781) —0.0978 —0.53 (0.5941)
D_sales 0.4464 1.86 (0.0617) 0.3939 2.59 (0.0096)
D_local _govt —2.5698 —3.83(0.0001) —0.5446 —1.23 (0.2156)
D_state_govt —1.3228 —2.07 (0.0385) —1.2894 —2.97 (0.0030)
D_fed_govt 0.8228 1.63 (0.1026) 0.6782 2.04 (0.0410)
O_pop95 0.8108 33.94 (0.0000) 0.4185 22.71 (0.0000)
O_area 0.2680 14.92 (0.0000) 0.1172 9.52 (0.0000)
O_college 6.0058 5.54 (0.0000) 4.5046 6.07 (0.0000)
O_borninstate —1.5466 —11.73 (0.0000) —0.4946 —5.50 (0.0000)
O_urate95 —0.4208 —8.43 (0.0000) —0.1367 —4.19 (0.0000)
O_mortgage 0.0628 0.49 (0.6225) —0.0616 —0.88 (0.3759)
O_exec 0.3886 1.37(0.1702) 0.1198 0.68 (0.4945)
O_sales —0.0039 —0.01 (0.9868) 0.2819 1.83 (0.0660)
O_local govt 1.7072 2.54 (0.0108) 1.5082 3.47 (0.0005)
O_state_govt —0.3572 —0.55(0.5760) —1.0193 —2.37(0.0176)
O_fed_govt —0.6902 —1.36 (0.1709) 0.4101 1.23 (0.2175)
OD_pop95 1.0150 8.68 (0.0000) 0.4468 5.79 (0.0000)
OD_area 0.2260 2.29 (0.0218) 0.1159 1.84 (0.0653)
OD_urate95 0.6557 2.61 (0.0089) 0.5319 3.54 (0.0004)
OD_farming —0.6185 —3.34 (0.0008) —0.3431 —3.22 (0.0013)
Log(distance) —0.5759 —75.22 (0.0000) —0.1671 —16.96 (0.0000)
Pd 0.4581 33.36 (0.0000)
Po 0.5175 39.28 (0.0000)
Pw —0.3863 —23.56 (0.0000)
o? 0.2438 0.1042

if the true data-generating process was a model containing a spatial lag, then
least-squares estimates are biased and inconsistent.

Summarizing, we found significant spatial dependence in the OD flows
modeled here. Least-squares estimates and inferences that ignore this depen-
dence are different from those produced using a spatial autoregressive model
specification. We found evidence for three different types of spatial dependence
that we have labeled, origin, destination and origin-to-destination based depen-
dence. A test for the SDM that subsumes the SEM and spatial lag model (SAR)
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as special cases lead to a rejection of the SEM and SAR in favor of the SDM.
This suggests that our model suffers from the presence of omitted variables
that exhibit spatial dependence.

5. CONCLUSIONS

We argue that use of a traditional least-squares regression to estimate
gravity or spatial interaction models ignores possible spatial dependence in
the sample data vector y of OD flows. Beginning with a model that posits no
spatial dependence in the vector y, we show that spatial dependence in y can
arise from omitted variables correlated with included variables when omitted
variables exhibit spatial dependence. Strategies that can be used to test for
the problem of omitted variables were discussed. It is well-known that use of
least-squares in the face of spatial dependence in the dependent variable vector
leads to biased and inconsistent estimates (see LeSage and Pace, 2004).

To address this issue, we show ways of incorporating spatial autoregressive
dependence in regression-based gravity models. An illustrative application to
migration flows among the lower 48 U.S. states plus District of Columbia was
used to provide a stylized illustration of our methods.

Our approach leads to a spatial OD filter specification that we apply to
the vector of OD flows to capture three types of possible spatial dependence
that may arise between OD flows: origin-based, destination-based, and origin-
to-destination based dependence.

We provide new results to make maximum-likelihood estimation compu-
tationally feasible for OD flow data. These exploit the structured nature of the
family of spatial regression gravity models introduced here to allow estimates
and inferences for the case of OD flow data, which can be large since the number
of observations N will equal the number of regions n in the sample squared, e.g.,
N = n?. Specifically, we discuss O(n) methods that can be used to compute the
log-determinant of the spatial transformation, and for computing the relevant
moment matrices. The use of the spatial OD filter makes the current corpus
of work on maximum likelihood and Bayesian estimation of spatial regression
models immediately relevant to OD flow modeling. The family of models in-
troduced here subsumes least-squares gravity models as well as single weight
matrix spatial regression models as a special case. Simple tests of parameter
restrictions that produce varying specifications for spatial dependence can be
carried out, resolving contentious model specification issues that often arise.

Maximum- likelihood estimation of the models introduced here is subject
to the caveat that the OD flows follow a normal distribution, or can be suit-
ably transformed to achieve normality. Additional work is needed to deal with
OD flows where a large proportion of the flows take values of zero, since this
situation may not be amenable to transformations that result in a normal dis-
tribution (see LeSage, Fischer and Scherngell (2007) for a discussion of these
issues).
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