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Abstract

Longitudinal studies examining socio-demographic and other contextual factors are vital to understanding landscape change.
Landscape structure, function, and change are assessed for the northern Ecuadorian Amazon by examining the composition
and spatial organization of deforestation, agricultural extensification, and secondary plant succession at the farm level in 1990
and 1999 through the integration of data from a satellite time-series, a longitudinal household survey, and GIS coverages.
Pattern metrics were calculated at the farm level through the generation of a hybrid land use and land cover (LULC) digital
classification of Landsat Thematic Mapper (TM) data. Population, labor, and other household variables were generated from
a scientific sample of survey farms orfincas interviewed in 1990 and resurveyed in 1999. Topography, soils, and distance
and geographic accessibility measures were derived for sample farms through a GIS as well as qualitative assessments
from household surveys. Generalized linear mixed models (GLMMs) were generated for 155 and 157fincas in 1990 and
1999, respectively, using pattern metrics at the landscape level as dependent variables, and biophysical, geographical, and
socio-economic/demographic variables as independent variables. The models were derived to explore the changing nature of
LULC at thefinca level by assessing the variation in the spatial structure or organization of farm landscapes in 1990 and 1999,
and the extent to which this variation could be explained by the available data. Results indicate rapid population growth causing
substantial subdivision of plots, which in turn has created a more complex and fragmented landscape in 1999 than in 1990.
Key factors predicting landscape complexity are population size and composition, plot fragmentation through subdivision,
expansion of the road and electrical networks, age of the plot (1990 only), and topography. The research demonstrates that
the process of combining data from household surveys, satellite time-series images, and GIS coverages provide an ideal
framework to examine population–environment interactions and that the statistical models presented are powerful tools to
combine such data in an integrated way.
© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

A growing literature on population–environment
relationships reveals that the effects of LULC (land
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use/land cover) dynamics in frontier environments
can be considered as occurring through a number of
contextual or mediating factors representing political,
human, and landscape ecology theory (Bilsborrow,
1987, 2003; Marquette and Bilsborrow, 1994; Moran
and Brondizio, 1998; Wood and Skole, 1998; Walsh
et al., 1999, 2001, 2003). Political ecology describes
forces and factors that are imposed upon a local
system from a regional or global context (Blaikie
and Brookfield, 1987). Human ecology argues that
people are active agents, within the interplay be-
tween population and the environment, who both
shape and are shaped by the environment (Pattison,
1969). Landscape ecology describes how landscape
structure, function, and change are influenced by
ecological processes (Forman and Godron, 1986).
From a spatial perspective, political, human, and
landscape ecology function at multiple scales through
exogenous and endogenous factors to alter the spa-
tial organization of landscapes, which are assessed
at a variety of grains and extents, and whose ef-
fects are scale-dependent. To define the context and
mechanisms of these theoretical LULC processes,
“characteristic” scales—ranges of spatial and/or tem-
poral scales in which scale–pattern–process rela-
tionships are autocorrelated—are defined such that
coarser scales above the characteristic scale define
context, and finer scales below the characteristic scale
define mechanisms.

Based upon these theories and prior research, the
examination of human–environment interactions is
extended to the Oriente or Northern Amazon region of
Ecuador through a Geographic Information Science
(GISc) perspective linked to multivariate statistical
models. In this research, we demonstrate the integra-
tion of spatial information (i.e., remote sensing im-
ages and GIS coverages) with household survey data,
and statistically explore different models of landscape
complexity in two different time periods. Specifically,
using farms surveyed in 1990 and 1999, and located
within three selected ISAs in the larger regional
study area, three types of pattern metrics have been
computed to serve as dependent variables: patch den-
sity, landscape shape, and contagion. Patch density
is a metric of patch configuration and composition,
whereas landscape shape and contagion capture patch
complexity, fragmentation, and landscape texture. The
pattern metrics were computed from 1986 and 1999

Landsat Thematic Mapper (TM) images and linked
to a set of independent variables extracted from 1990
and 1999 longitudinal household surveys, and derived
from GIS coverage data to represent hypothesized
effects of household characteristics on the spatial
structure or organization of LULC patterns. The col-
lected and derived data were integrated through mul-
tiple regression models developed for 1990 and 1999,
and interpreted relative to population–environment
theories and our direct observations of how farms
are evolving in the Oriente and how LULC is be-
ing altered. The statistical models presented here are
more statistically robust (than previous models) to
dependencies between nearbyfincas, because of the
inclusion of within sector correlation when computing
parameter estimates. In addition, GIS coverage and
pattern metrics are more complete, since we analyzed
data collected from three ISAs rather than only the
NISA.

The broad goals of this paper are to explore the rel-
evance of spatial patterns of LULC at the farm-level,
and how socio-economic, demographic, biophysical,
and geographical variables explain the observed vari-
ation in LULC patterns, described through a 1986
and 1999 satellite classification of LULC, and the
application of selected pattern metrics to quantify the
spatial structure of LULC patterns for the two time
periods. The primary goals are to explicitly consider
the spatial landscape patterns on surveyed farms and
to associate landscape form with landscape function
through the regression models. The aim is not to de-
velop an ultimate model of forces driving the spatial
re-organization of LULC in the Oriente, but rather is
more methodological to explore the nature of spatial
patterns of land use at the farm-level and to assess
the factors associated with landscape pattern in 1990
and 1999. Therefore, parameters and coefficients for
the 1990 and 1999 models were individually inter-
preted through separate regressions and collectively
compared to examine their relative importance in
the two time periods. How the socio-economic, de-
mographic, biophysical, and geographical variables
affect LULC patterns at two different stages of fron-
tier development (i.e., at the two selected dates)
were explicitly addressed. In the course of this anal-
ysis, the nature of the LULC classification scheme
and the choice of pattern metrics were implicitly
considered.
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Fig. 1. Study area location, northeastern Ecuadorian Amazon.

2. Methods

2.1. Contextual background—Ecuador

The northern Ecuadorian Amazon (Fig. 1) is an ex-
traordinarily biologically diverse region and one of
the 11 ecological “hot spots” in the world (Myers,
1988; Myers et al., 2000). Rapid migration into this
region began in the early 1970s when petroleum com-
panies built roads to explore for oil, and subsequently,
to extract it by laying pipelines. Once the region be-
came accessible through the road network, colonists
migrated to the region in search of land, spurring rapid
population growth. Over the past three intercensal pe-
riods, population for the Amazon region as a whole
(provinces of Napo, Sucumbios, Orellana, Pastaza,

Morona Santiago, and Zamora Chinchipe) has grown
at over double the national rates, at 8% per year from
1974 to 1982, 5% per year from 1982 to 1990, and
3.5% per year from 1990 to 2001.

Migrants claimed farms orfincas, normally config-
ured as 0.25 km×2.0 km plots (approximately 50 ha),
initially along roads due to geographic accessibility
and subsequently on parallel rows of farms orlineas
extending up to 16 km back from the main roads.
Once established, a group of farmers living in one
area orsector would seek to have their land bound-
aries surveyed by the Ecuadorian land titling agency,
IERAC, to establish plot boundaries as the first step
towards purchasing provisional land titles and ulti-
mately full land titles. As a result, small-scale farmers
have been the primary direct agents of land conversion
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from forest to agriculture in Ecuador (Bromley, 1989;
Rudel and Horowitz, 1993; Southgate and Whitaker,
1994; Pichón and Bilsborrow, 1999).

The Oriente, unlike the Brazilian Amazon: (1)
has no large urban areas—Lago Agrio is the largest
city with a 2001 census population of only 34,000;
(2) settlers are predominantly poor farmers; (3) no
government subsidies or other major policies were
developed to encourage ranching; and (4) there has
been no large-scale timber extraction by commercial
logging companies. In addition, the Oriente has no
season without rain, resulting in little slash-and-burn
agriculture, and generally appears to have more fertile
soils, reducing the abandonment of land plots follow-
ing agricultural cultivation. The agricultural system in
the region involves annual crops such as corn and rice;
semi-perennials such as plantains, bananas, and yucca;
and perennial tree cash crops, mainly coffee (on over
80% of all farms) with modest production of cacao.

2.2. Northern Ecuadorian Amazon study area
and prior research

Based on the northern-most provinces of Su-
cumbios and Orellana, a study was initiated in 1990
to examine the household factors affecting LULC.
Data were collected subsequently consisting of: (1)
household surveys of farm plots in 1990 and 1999;
(2) a time-series of satellite imagery from 1973 to
2002; and (3) a community survey in 2000 to provide
regional infrastructure and other contextual informa-
tion. Analyses indicate widespread land subdivision
since 1990 on samplefincas located along main roads.
Subdivision has occurred because of sales of parts of
a finca to new in-migrants or through inheritance by
children of settlers. The result has been a significant
decline in farm size, leading new owners to reduce
land in forest and pasture and increase more in the in-
tensive forms of land use—perennials (mostly coffee)
and annual crops. Other important changes since 1990
include the expansion of the road network and electri-
fication grid, and an increase in off-farm employment.

Statistical models have been developed to exam-
ine the variation in LULC as reported in the 1990
and 1999 socio-economic and demographic surveys.
Pichón (1997), Pichón and Bilsborrow (1999)and
Pan et al. (2001)conducted cross-sectional multivari-
ate regression analyses to examine the determinants

of LULC dynamics at the farm-level. Findings sug-
gest that a number of demographic (i.e., education
level, household size), socio-economic (i.e., land title,
household labor), biophysical (i.e., soil and terrain),
and geographical (i.e., distances to roads and mar-
kets) factors significantly influence land use. Pattern
metrics and cellular automata models utilizing the
satellite time-series (Messina et al., 1999; Messina
and Walsh, 2001; Walsh et al., 2002) suggest that the
Oriente as a whole, but the Northern Intensive Study
Area (NISA) in particular, is undergoing a conversion
of LULC types from high-density forest to agri-
culture and to low and medium density forest. The
sequence of changes over time has been attributed to
initial deforestation along roads, second stage forest
clearing to expand subsistence agriculture to com-
mercial activities, renewed deforestation onfincas
whose ownership patterns have changed through land
subdivision, and modest secondary plant succession
of agricultural lands related to declining soil fertility
and land conversion to pasture.

2.3. The household longitudinal survey and
socio-economic variables

To help understand the processes affecting change
in the region, a representative sample of migrant set-
tler household plots was selected in 1990 and revisited
in 1999. In the 1990 household survey, 470fincas
were selected from 64 sectors. Two questionnaires
per household farm were administered separately to
the household head and spouse to acquire information
regarding land use, labor, technical assistance, house-
hold composition, fertility, household assets, etc. Data
were successfully collected for 418 farm subdivisions
located on 398fincas, with a response rate of 95%
(most non-responses were farms that lacked economic
activity and either lacked a dwelling or a respondent).
A follow-up survey was administered in 1999 on the
samefincas interviewed in 1990 using similar ques-
tionnaires for the household head and spouse. During
the intervening 9 years, an extraordinary process of
subdivision and fragmentation of many of thefincas
occurred, resulting in more than twice as many fami-
lies on the same plots as in 1990 (823 farms, plus 111
solares or houseplots with 1 ha or less of land). Data
were successfully collected for 767 of the 823 farm
plots on 392fincas, with a response rate of 95% (most
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non-responses were either refusals (N = 21) or unin-
habited farms with no agricultural activity (N = 22)).

From the original data collection, we performed
analyses on a select group offincas located within
sectors inside three ISAs, each approximately
90,000 ha—the NISA, which contains Lago Agrio,
the central city within the region and capital of the Su-
cumbios province; the southern ISA (SISA), which is
geographically positioned in a more rolling physical
environment containing two small cities—Coca and
La Joya de Los Sachas;1 and the eastern ISA (EISA),
containing the main town of Shushufindi. Each ISA
is composed of sample sectors containing a cluster
of original fincas: the NISA contains 7 sectors with
51 fincas, the SISA contains 8 sectors and 49fincas,
and the EISA includes 8 sectors and 60fincas. The
maximum sample size was 23 sectors and 160fincas
for each time period, from which GIS coverage data
were available. Survey data were complete for 155
fincas in 1990 and 157fincas in 1999. Sectors may
be at different stages of deforestation and agricultural
extensification, due to the spatial diffusion of roads,
population growth, and accessibility betweenfincas
within a sector and communities; therefore, multilevel
sector effects were modeled to control for correlation
betweenfincas located within the same sector.

Variables derived from the household survey for
the statistical model were categorized as biophys-
ical, socio-economic/demographic, and geographic
(Table 1). Since the observation of interest for the
present analysis is the originalfinca and not the in-
dividual subdivision, it was necessary to aggregate
information for all farms on a subdivided plot (i.e.,
compute mean age of household heads, soil quality,
topography, ownership title status, etc.). Categorical
(binary) variables were defined according to thepro-
portion of the finca characterized by each variable.
Thus, if the owner of a 30 ha plot held legal title
to the land, but the owners of a subdivision totaling
15 ha did not, the proportion of thefinca characterized
as having a land title was 0.66 (30/45). In addition,
since many of the biophysical and geographic vari-
ables were defined from remote sensing imagery,

1 Coca is the capital of the Orellana Province, smaller than
Lago Agrio, and is located in the extreme southwestern corner
of the SISA. La Joya is a growing community—yet smaller than
Coca—centrally located in the SISA.

the inclusion of similar alternative variables qualita-
tively defined by the farmer provided a comparison
of the accuracy of measures of land characteristics.
Specifically, variables on soil quality, topography, and
distance extracted from the survey and GIS coverage
data were compared in the statistical models. Qual-
itative assessments of land (good/black soil and flat
land) are often reported by farmers for areas that are
already cleared or intended to be cleared, while ar-
eas considered unusable are sometimes ignored (see
Table 4—the increase in flat plots from 1990 to 1999,
compared to mean and median slopes that do not
change). In addition, distance measures are sometimes
more accurately reported by a farmer due to an incom-
pletely digitized road network. This is especially true
for walking distances to the road, whereby the GIS
derivation used a straight-line Euclidean path between
the household and the road, which may not coincide
with the actual path taken by household members.

2.4. GIS coverages and variable derivatives

Independent variables derived within the GIS from
spatial data of the study area include four topographic
aspects, three distance calculations to measure acces-
sibility and connectivity of farms to other farms and
communities, and six indicators of farm subdivisions
on neighboringfincas. Table 2defines each variable
derived from the GIS coverage data. Slope statistics,
which help identify the more desirable flat terrain,
were computed in degrees. The potential wetness
index (PWI) layer was generated using three raster
layers created in ArcInfo GRID from the DEM, and
converting the PWI equation into GRID commands.
The equation for PWI is

PWI = ln

(
A

tanB

)
(1)

where A is the flow accumulation from uphill cells
into the target cell, andB the slope of the cell. The
PWI variable indicates the level of soil wetness as-
suming equal rainfall across the entire study area.
Values near zero indicate potentially dry areas, such
as hill tops and ridges, while higher values indicate
areas that could potentially be much wetter, such as
valleys, low lying areas, and riverine locations.

The distance from thefinca to the nearest water
source was derived by overlaying a point coverage of
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Table 1
Variables derived from the household surveys

Variable category Variable name Variable description

Biophysical
Topography Flat land Percent offinca classified as flat or flat and rolling

Soil Good Soil Percent offinca classified with good soil
Black Soil Percent offinca classified with black soil

Land measures Area (ha) Total area of thefinca
Number of Crops Number of different crops found on thefinca

SES/demographic
Household Age of head Average age of household heads on thefinca

Education of head Average education of household heads on thefinca
Number of adult males Number of males at least 12 years old
Number of adult females Number of females at least 12 years old
Number of children Population under 12
Year plot established Yearfinca first inhabited or cleared for agricultural use
Technical Assistance Percent offinca that reports TA for crops, cattle,

agricultural inputs, or agroforestry

Labor pool Number of subdivisions Number of subdivisions on afinca
Number of households Number of households located on thefinca
Original sector size Number offincas in the 1990 sample sector
Person-months of hired labor Total hired labor (day and contract labor)
Person-months of OFE Months of off-farm employment among any household

members living on the farm

Wealth Title Percent offinca holding full land title
Certificate of possession Percent offinca holding provisional land title
Receipt of credits/loans Whether any subdivision on afinca received credits
Access to electricity Whether electricity is available in the home
Average assets per HH Mean number assets owned by households on afinca

(weighted by plot size)

Geographic/spatial
Distance and plot access Road access tofinca Finca has year-round vehicular access, regardless of rain/flooding

Walking distance to road Walking distance from household to road (km)
Road/boat distance to community Road/boating distance from road to community (km)

the finca centroids with a hydrography arc coverage
digitized from 1:50,000-scale topographic maps, and
containing rivers and lakes. A simple Euclidean dis-
tance, in meters, was calculated from each centroid to
the nearest hydrography arc. Network distance, in kilo-
meters, from each household to a reference commu-
nity (one of the four large communities—Lago Agrio,
Shushufindi, La Joya de Los Sachas, or Coca—serve
as references) in the study area was computed using
a road network digitized from 1:50,000 topographic
maps. Network analysis required that allFrom andTo
points be on the road network. Because none of the
household and GPS points were actually on the net-
work, a modification to their locations had to be made.

The community (center) GPS points were moved to the
nearest road segment, in most cases a distance of a few
meters. For the households, a point was placed mid-
way between the two front corner points of thefinca
and then snapped to the nearest vertex of the nearest
road segment. This point represented theFrom point
for thefinca, and the network distance was calculated
between eachFrom point and communityTo point. As
an alternative to Network distance, Euclidean distance
from each household to a reference community was
also computed in a similar fashion, however, actual
household locations were used as theFrom point.

The six neighborhood variables consisted of the
number of subdivisions within 3, 5 and 10 km of each
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Table 2
Variables derived from GIS coverages

Variable category Variable name Variable description

Biophysical
Topography Mean slope Mean degrees of slope characteristic of afinca

Median slope Median degrees of slope characteristic of afinca

Soil Mean PWIa Mean potential wetness index
Median PWI Median potential wetness index

SES/demographic
Labor pool Number of subdivisions within 3 km Number of subdivisions within 3 km offinca centroid

Number of subdivisions within 5 km Number of subdivisions within 5 km offinca centroid
Number of subdivisions within 10 km Number of subdivisions within 10 km offinca centroid

Geographic/spatial
Distance and plot

access
Network distance community Network road distance from road access point to the reference

community (km)
Euclidean distance community Euclidean distance from household to the reference community (km)
Distance to water (m) Euclidean distance fromfinca centroid to nearest source of water (m)

a Potential wetness index.

finca for 1990 and 1999. The centroid of eachfinca
was used as the reference point for the distance calcu-
lations and an Avenue program was used to perform
the calculations.

2.5. Image classification and pattern metrics

Landsat TM images in 1986 and 1999 of the three
ISAs were classified into five generalized LULC
classes: forest, non-forest vegetation, urban/barren,
water, and cloud/shadow (Fig. 2a–c). A hybrid clas-
sification approach, using ERDAS Imagine, was used
(Messina, 2001) to characterize LULC in 1986 and
1999 using Landsat TM digital data.2 The approach
involved the ISODATA decision-rule operating within
an unsupervised classification mode to define 100
“naturally” occurring spectral classes that were subse-
quently reduced to approximately 30 classes through
the interpretation of the transformed divergence and
divergence statistics generated as output from the
classification. Then, a supervised classification was
applied using a maximum likelihood classifier to as-
sociate the unclassified pixels to one of the 30 spectral
classes defined through the unsupervised classifica-

2 1986 was the closest useful image date to the 1990 survey that
covered all three ISAs used in this study, due to a predominance
of clouds and their shadows masking most landscape features.

tion. This approach allowed for the generalization of
classes to several key LULC types, as well as the ex-
pansion of cover types to additional classes as needed.
The approach did not rely upon in situ data and/or
aerial photography for class definition, but empha-
sized statistical measures to guide the process so that it
would be repeatable for images across the time-series.
It thereby lacked the spectral, spatial, and thematic
control that was available for more recent images.

Pattern metrics were calculated at the landscape
(finca) level to assess the nature of landscape com-
position and spatial organization and to generate spa-
tial/temporal signatures of landscape patterns as part
of the scale–pattern–process paradigm (Walsh et al.,
2002). The regional spatial context in which sites exist
(landscape function) affects the properties, or form,
of that landscape (Walsh et al., 2002). The derivation
of the metrics was achieved through algorithms con-
tained within FRAGSTATS (McGarigal and Marks,
1995), which calculates the spatial structure of nom-
inal classes of LULC types at the landscape, class,
and patch levels. Landscape-level metrics represent
patterns occurring within a preset boundary, such as
a sector orfinca; class-level metrics represent the
patterns of an LULC class (e.g., forest class) that
exist within a defined unit boundary; and patch-level
metrics represent the patterns associated with a single
contiguous class relative to other classes.
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Fig. 2. (a) Classified Landsat TM image for 1986 and 1999 for the Northern ISA. (b) Classified Landsat TM image for 1986 and 1999
for the Southern ISA. (c) Classified Landsat TM image for 1986 and 1999 for the Eastern ISA.
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The digital finca boundary files were used in
ArcInfo GRID to clip thefincas out of the 1986 and
1999 classified TM images. The resultant grids were
then input into FRAGSTATS to compute the selected
landscape metrics for each of the surveyfincas. Al-
though FRAGSTATS can compute numerous pattern
metrics, patch density, landscape shape index, and
contagion were used in regression models based upon
hypotheses about the spatial organization of LULC
and the determinants of landscape dynamics.Patch
density (PD) expresses fragmentation, but on a per
unit area basis by dividing the number of patches in
a class by total area, then converting to the number
of patches per 100 ha. An increase in PD indicates
that a particularfinca has increased the number of
land uses or has fragmented the plot into separate
non-contiguous land uses (i.e., broken up a large
area of forest into 2 or 3 non-adjacent patches of
crops).Landscape shape index (LSI) is a standardized
measure of total edge, a key factor affecting spatial
patterns in landscape ecology, where smaller values
indicate fewer patches, more aggregated forms of
land use, and less evidence of human alteration of the
landscape. It compares the shape of a landscape to
that of a simple landscape of the same size by sum-
ming the landscape boundary and all edge segments
of a particular patch type, then dividing by the square
root of the total area. It is essentially a standardized
measure of connectivity, insularity, and spatial het-
erogeneity in the landscape, which in this case is al-
tered by human interaction.Contagion (CTGN) is the
probability that two adjacent cells belong to different

Table 3
Correlation matrix of Pattern Metrics computed in 1986 and 1999a

Metric Number of patches PD Total edge Edge density LSI CTGN

86 99 86 99 86 99 86 99 86 99 86 99

Number of patches
Patch density 0.84 0.68
Total edge 0.85 0.61 0.55 0.17
Edge density (m/ha) 0.85 0.43 0.86 0.54 0.79 0.72
LSI 0.91 0.61 0.8 0.51 0.88 0.78 0.92 0.84
Contagion −0.68 −0.27 −0.71 −0.36 −0.63 −0.47 −0.83 −0.67 −0.76 −0.58
Interspersion/

juxtapositionb
0.24 0.13 NS 0.25 0.19 0.15 NS 0.15 NS 0.22 0.23 0.21 0.21−0.39 −0.64

a PD: patch density, LSI: landscape shape index, CTGN: contagion all correlations are significant at theP = 0.01 level, except for
those labeled “NS”, which haveP > 0.05.

b N = 129 in 1990, 154 in 1999.

patch types, and therefore measures patch type in-
terspersion and patch dispersion. Interspersion refers
to the intermixing of patches of different types and
is based solely on patch rather than cell adjacencies,
while dispersion refers to the spatial distribution of a
patch type. Therefore, holding interspersion constant,
a finca with large contiguous patches will generally
have higher CTGN than one with patches fragmented
into smaller patches. Similarly, since dispersion is
defined using cell adjacencies rather than patch adja-
cencies, large contiguous patches will also have high
CTGN due to the proportion of total like adjacencies.
Table 3illustrates the high correlation among various
metrics computed in FRAGSTATS for our data and
the decrease in correlation from 1990 to 1999, reflect-
ing the differences between the two time periods. It
is not surprising that the metrics are strongly corre-
lated, given that the equations used to compute them
are similar. However, PD, LSI, and CTGN standard-
ize the metrics for easy comparison within a metric
(i.e., compare PD vs. the number of patches between
two farms, the latter of which is dependent upon plot
size), making interpretation more reasonable.

2.6. Statistical methods

The statistical model applied to assess the biophys-
ical, demographic, and geographic factors influencing
landscape characterization based on pattern met-
rics, was a generalized linear mixed model (GLMM;
Harville, 1977; Laird and Ware, 1982; Goldstein,
1986, 1995; Bryk and Raudenbush, 1992). GLMMs
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rely upon hierarchical theory where higher level units
influence lower level sample units. The model com-
bines these multiple-level effects under one model
equation with the assumption that random effects
(higher level units) are normally distributed and un-
correlated with the fixed effects (lowest level) of the
model. The present application assumes that random
sector effects influence the mean predicted pattern
metric on afinca. The model is written as inEq. (2),
whereYij is the outcome of interest (pattern metric)
for farm i in sectorj andk indexes thep known and
unknown independent variables and corresponding
parameters, respectively (X andβ—the fixed effects):

Yij =
p∑

k=0

Xkijβk + Zjδj + eij (2)

Zj represents thejth sector,δj the corresponding ran-
dom sector effects, andeij the fixed effects residual
error, similar to traditional linear regression. The as-
sumptions, thateij andδj are independently, normally
distributed with means of 0 and variances ofσ2

e and
σ2

δ , respectively, imply that the covariance betweeneij

andδj is 0. Therefore, the covariance structure can be
succinctly written:

Var(Yij) = Z2
j
σ2

δ + σ2
e (3)

Estimation of the GLMM differs from traditional
linear regression in that maximum likelihood leads
to biased estimates. Therefore, restricted maximum
likelihood is typically used to reduce bias (Bryk and
Raudenbush, 1992). Model selection is also slightly
different in that GLMM proceeds in two repeating
steps: (1) model the expected value (fixed effect)
of the equation, and (2) model the random effects,
which essentially models the random variation. Model
selection began by choosing a maximum model of
non-collinear variables fromTables 1 and 2, exam-
ining high influence and high leverage observations,
then removing variables not significant at the 0.3
probability level. In the second step,−2 log likelihood
(−2 logL) and Akaike criterion (AIC) statistics were
used to select the best variance model for the random
sector intercepts and concluded that an unstructured
covariance proved to be the most stable and efficient
structure.

The integration of pattern metrics, GIS coverages,
and household characteristic data was performed using

unique identifiers for eachfinca within SAS 8.0. All
descriptive statistics and GLMMs were also computed
using SAS (Littell et al., 1996). Although GLMM is
well suited to perform analyses of changes over time,
the focus of this particular research is methodologi-
cal and exploratory, rather than primarily inferential;
therefore separate models for each year are fit and not
modeling the changes that occur over time.

3. Results and discussion

The usual sequence of land conversion begins with
the cultivation of small areas of food crops for sub-
sistence, followed by the cultivation of cash crops,
particularly coffee, and finally conversion to pasture
as soil fertility declines. While land abandonment is
uncommon in the Oriente, experience suggests that
this “usual” sequence differs in the Ecuador Ama-
zon, especially among newly establishedfincas and
subdivisions of existingfincas. New subdivisions of
a finca, generally further from the road and created
since 1990 by new migrants or children of the original
migrants, demonstrate initial clearing for cash crops
(mostly coffee) or taken over parts of thefinca already
cleared for cash crops or pasture. This has important
implications when interpreting regression results since
land conversion is strongly influenced by the house-
hold composition and age structure (i.e., the stage of
the household lifecycle), the year plot clearing began,
and the socio-economic level of the household. Gen-
erally, we conclude that 1990 land use reflects ini-
tial clearing, while 1999 represents extensification and
second-generation clearing.

3.1. The changing landscape from 1990 to 1999

Tables 3 and 4compare means and standard devi-
ations for variables entered into the GLMMs. A few
key variables were selected here to interpret through
descriptive statistics generated for 1990 and 1999. The
dramatic increase in farm subdivisions is evident, only
11% of fincas in 1990 were subdivided compared to
54% in 1999 (1.1 vs. 2.5 farms perfinca in 1990 and
1999, respectively). The increase in subdivisions is a
result of high population growth—the population den-
sity increased 55% from 1.62 persons per ha in 1990
to 2.51 in 1999. Other than higherfinca population,
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Table 4
Descriptive statistics for biosphysical, socio-economic, and geographic variables reported from the survey data: 1990 vs. 1999

1990 (N = 155) 1999 (N = 157)

Mean S.D. Mean S.D.

Biophysical
Topography Mean slopea 1.16 1.46 1.12 1.45

Median slopea 0.78 1.27 0.75 1.25
Flat (proportion offinca) 0.59 0.49 0.68 0.43

Soil Mean potential wetness indexa 6.02 1.10 6.05 1.10
Median potential wetness indexa 5.75 1.20 5.78 1.19
Good (proportion offinca) 0.43 0.49 0.40 0.44
Black (proportion offinca) 0.78 0.41 0.58 0.47

Land measures Area (ha) 51.89 41.10 46.66 13.54
Number of crops 3.03 1.64 3.55 2.06

SES/demographic
Household Average age of head 46.80 12.42 46.84 10.24

Average education of head 1.49 0.71 2.67 0.94
Number of adult males (≥12 years) 3.06 1.82 4.43 3.38
Number of adult females (≥12 years) 2.32 1.63 3.31 2.59
Number of children (<12 years) 2.99 2.43 3.99 3.83
Year plot established 1980 4.66 1979 5.45
Technical assistance (proportion offinca) 0.41 0.48 0.27 0.41

Labor pool Number of subdivisions 1.13 0.41 2.46 1.96
Number of households onFinca 1.10 0.44 2.01 1.48
Number of subdivisions within 3 kma 7.74 2.95 18.48 10.07
Number of subdivisions within 5 kma 9.19 3.50 20.92 10.70
Number of subdivisions within 10 kma 26.45 12.54 67.32 43.79
Original sector size 31.36 11.79 31.42 11.88
Person-months of hired labor 8.07 15.73 3.21 5.59
Person-months of off-farm employment 4.15 8.54 25.53 48.21

Wealth Title (proportion offinca with title) 0.66 0.46 0.62 0.43
Certificate of possession (proportion offinca) 0.32 0.46 0.12 0.29
Receipt of credits/loans 0.28 0.45 0.45 0.50
Access to electricity 0.21 0.41 0.73 0.44
Average assets per household 7.91 2.42 6.81 2.13

Geographic/spatial
Distance and

plot access
Road access tofinca 0.65 0.48 0.71 0.46
Walking distance to road (km) 2.11 2.97 0.56 0.92
Road/boat distance to community (km) 16.85 11.33 13.83 8.81
Network distance to reference communitya 26.73 17.32 26.27 17.40
Euclidean distance to reference communitya 10.36 7.25 10.29 7.21
Distance to water (m)a 394.81 303.73 402.35 301.75

a Variable was derived from a GIS.

smaller plots in 1999 also caused an increase in den-
sity, which in turn resulted in an increase in partici-
pation of off-farm employment and a decreased need
for hired labor.

Among household variables, mean education of
household heads rose substantially (from 1.5 to 2.7

years), primarily due to the creation of new plots
and thus new household heads who were typically
younger and received more education as part of the
secular rise in school enrollments in Ecuador. The
numbers of adult males, adult females, and children
rose by 45, 42 and 34%, respectively, with the smaller
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increase in children a reflection of declining fertility
(Carr and Pan, 2002).

Household wealth has also changed considerably
over time. The percent of the land area in samplefincas
with legal or provisional title (certificate of possession)
fell from 96 to 74% as new subdivision owners did
not have their status legitimized due to the lack of
an active government institution to process land title
requests.3 At the same time, the proportion of farmland
on which the holder received credit increased, and the
electrical grid expanded rapidly along the main roads
so that the proportion of land held by households with
electricity in their dwellings rose from 21 to 73%.
Such an increase was much greater than that which
occurred over the entire study area, and reflects the
fact that the three ISAs surround the four major towns
and primary roads, where new electric lines have been
built during the 1990s.

Geographic/spatial measures reveal increased road
access through improved road conditions and an ex-
panded network. The mean walking distance from
households to roads declined substantially, from
2.1 km in 1990 to 0.6 km in 1999. Although additional
road construction continued throughout the 1990s,
much of this decrease was attributed to new subdivi-
sions occurring onfincas located on main roads. At
the same time, the computed Euclidean and network
distances to four reference communities remained
necessarily constant over time even as the reported
road distances by farmers declined by 3 km (20%).

Biophysical measures for samplefincas in both
1990 and 1999 are compared at the top ofTable 4.
While substantial changes occurred between 1990
and 1999 in many of the other variables, the inherent
biophysical characteristicsshould remain steady be-
cause of the static site conditions of terrain and soil
characteristics. Variables derived from GIS coverages
reflect these static conditions, however, perceived
site conditions changed. The percent reporting flat
land increased, while those reporting black and better
quality soils fell over time. These two changes reflect
two key ingredients to qualitative data: (1) percep-
tions can change over time and (2) assessments are
sometimes made only to lands that have been cleared
already—not the entire landscape.

3 IERAC was replaced in 1993 by a much weaker land-titling
agency, INDA.

Table 5
Descriptive statistics for land use classifications and Pattern Metrics
derived from satellite imagery: 1986 vs. 1999

1986 (N = 155) 1999 (N = 157)

Mean S.D. Mean S.D.

Land use classesa

Forest 26.82 11.66 14.50 9.31
Non-forest vegetation 14.34 9.88 21.96 10.97
Urban/barren 7.15 8.74 10.85 7.60
Water 0.02 0.13 0.10 0.43
Clouds/shadows 0.99 1.97 2.07 3.68

Pattern Metrics
Number of patches 10.34 5.22 13.09 3.16
Patch density

(number/100)
21.12 10.29 26.93 6.56

Total edge 3143.00 2200.82 3830.25 1296.48
Edge density (m/ha) 62.33 32.24 77.71 21.20
Landscape shape index 2.79 0.66 3.04 0.42
Contagion 45.63 16.44 38.61 9.13
Interspersion/

juxtaposition
indexb

77.67 21.78 76.64 17.52

a All classes are measured in hectares.
b N = 129 in 1986, 154 in 1999.

Table 5compares change among measures of the
land classifications used to compute metrics as well
as the change in the metrics for images from 1986
and 1999. According to the images, hectares of for-
est dropped considerably over time primarily due to
the increase in non-forest vegetation. Pattern met-
rics reflect this change through increases in PD and
LSI, combined with the decrease in CTGN, which
are indicative of the rapid increase in plot subdi-
visions, population growth, and second-generation
human-induced landscape change. In addition, stan-
dard errors are much larger in 1990 than 1999, re-
flecting more homogenous landscapes and spatial
spillover (land uses among neighbors and within sec-
tors becoming more correlated) in 1999 than 1990.

3.2. GLMM regression results

Results of the six GLMMs are shown inTable 6.
Fixed effects are listed in the top three panels, while
covariance estimates and goodness of fit are listed
in the bottom panel (rho is the proportion of total
variance that occurs between sectors). There is a
strong presumption that farms in a particular sector
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Table 6
GLMM results for contagion, landscape shape, and patch density in 1990 and 1999

Classification Variable description Contagion Landscape shape Patch density

1990 1999 1990 1999 1990 1999

Intercept 55.35∗∗ 37.74∗∗ 2.39∗∗ 3.08∗∗ 18.53∗∗ 27.41∗∗
Biophysical

Topography Median slope 1.96∗ 1.04 −0.05 −0.07∗ −0.17 −0.90

Flat (proportion offinca) −5.61† 0.70 0.12 −0.02 2.16 1.93

Soil Black (proportion offinca) 0.76 −1.22 0.01 0.00 −1.18 −0.68

Land measures Area (ha) −0.02 0.05 0.01∗∗ −0.003 −0.01 −0.15∗∗

SES/demographic

Household Average age of head −0.22∗∗ −0.01 0.01† −0.001 0.08∗ 0.02
Number of adult males 1.33 0.54 −0.04 −0.008 −0.65 0.10

Number of adult females 1.89∗ −3.50 −0.07† −0.0094 −0.35 0.12

Number of children (<12 years) 1.20 −0.27 −0.01 0.02 −0.30 0.51†

Year plot established −0.61∗∗ −0.17 0.01 0.001 0.23∗ −0.02

Population density −67.51† 6.97† 1.23 0.001 21.85 −5.67†

Technical assistance (proportion offinca) −4.26 −1.57 −0.02 0.05 2.78 1.86

Labor pool Number of subdivisions −4.99∗ −0.27 0.28† 0.02 5.14∗∗ 0.36
Number of subdivisions within 3 km 1.15∗∗ 0.05 −0.03 0.003 0.18 0.02
Person-months of hired labor −0.02 −0.06 −0.01∗∗ 0.01 0.06 0.03
Person-months of off-farm employment 0.39∗∗ −0.001 0.00 0.0001 −0.12∗ −0.01

Wealth Title (proportion offinca with title) −5.45† 2.68 0.19† −0.04 1.78 0.84
Receipt of credits/loans 0.35 −0.19 0.14 0.06 −0.55 0.54

Access to electricity −3.42 −4.09† 0.10 0.12 −0.10 0.72

Geographic/spatial
Distance/access Road access tofinca 3.23 −0.63 −0.21 0.01 −8.14∗∗ 0.02

Road/boat distance to community (km) −0.11 0.01 0.01 −0.01 0.41† −0.08

Euclidean distance to reference community 1.23† −0.65∗ −0.01∗∗ 0.02 −1.48∗∗ 0.32
Distance to water (m) 3.72 7.68∗∗ −0.05 −0.32∗∗ −1.84 −2.57

Covariance and goodness of fit
Covariance Random intercept 42.38 4.67 0.15 0.05 50.01 3.37

Residual 112.37 71.93 0.15 0.12 36.13 35.00

Goodness of fit Rho 0.27 0.06 0.50 0.29 0.58 0.09

† P < 0.10.
∗ P < 0.05.
∗∗ P < 0.01.

will tend to have similar patterns of land use, even
controlling for similarities in biophysical and loca-
tional conditions though the other variables, due to
the spatial diffusion of information (sharing informa-
tion between neighbors). This presumption holds true
for 1990, but not necessarily in 1999, as reflected
in the large decrease in variance explained by sec-
tors in 1999 compared to 1990 (large decreases in
rho). One therefore concludes that GLMMs are better

models for 1990 than 1999. In addition, a larger set
of independent variables predicting PD, CTGN, and
LSI were found significant in 1990, indicating the
vast changes in landscape, household dynamics, and
regional infrastructure, which have become more ho-
mogenous over time (therefore sector-level variance
declined). These results indicate that the inter-regional
connection between farms in 1999 (located within
the ISAs) are stronger than 1990 due to the expanded
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road network, improved communication, and access
to information. In other words, land use choices in
1990 appeared more independent between sectors,
yet highly correlated within sectors, while in 1999
land use appeared correlated both between and within
sectors. This relates to evidence that the choice for
particular land uses has spatially diffused (become
more correlated) from 1990 to 1999. This implies that
the model used in 1999 would be more efficient if the
correlation structure was modeled using either a co-
variance function based upon distance betweenfincas
or a spatial weight matrix to represent the diminishing
correlation asfincas are further separated in space.

3.2.1. Contagion
Results from the CTGN models generally reflect

more interspersed and dispersed patches in 1999 than
1990. The effects of flat terrain (and high median
slopes) on CTGN were significant and negative in
1990, but not significant in 1999. This implies that
flat terrain impelled farmers to diversify plots in 1990
(add additional types of land use), but by 1999, in-
creasing pressure led to more extensification on both
flat and steep land. Older heads of household and plots
significantly reduced CTGN in 1990 since both re-
flect the time a plot has been exposed to land clearing
and agricultural use (i.e., older plots are more likely
to have a greater number of patches of different land
uses). Neither of these variables was significant in
1999, suggesting a more mixed composition of house-
hold heads including second-generation heads and
new migrants, which decreases the mean age of the
household head and typically increases interspersion
and dispersion of patches. Higher population density
was one of two variables that remained significant in
both the 1990 and 1999 CTGN models, however, the
sign changed to positive (higher density implies more
CTGN) in 1999. This is likely due to the 55% in-
crease in population density—asfincas become more
populated, more land clearing occurs. At some point
a threshold is likely reached whereby human-induced
changes causemore aggregation of patches due to
more patches of, say, pasture and coffee, which are
more likely to be contiguous.

Labor pool variables were generally significant
in 1990, but not 1999, probably due to the more
widespread availability of labor and better access in
1999. The negative effect on CTGN of the number of

subdivisions indicates the effects of more available
local labor on the fewfincas that had it on the ability
to clear land for agricultural use.Finca households
engaging in off-farm employment (OFE) were ex-
pected to have higher CTGN since they either have
less labor to clear land or they have large contiguous
patches that require little daily on-farm labor. OFE
significantly increased CTGN in 1990, likely because
households that participated in OFE were well devel-
oped with large patches of pasture. In contrast, OFE
in 1999 was not significant since OFE was much
more common overall in 1999.

Fincas with more land under legal title in 1990 had
significantly less CTGN, likely due to having more
incentive and ability to clear the plot for agricultural
use. However, in 1999 the effect of land title was not
significant and changed sign. This is reasonable due
to the fact that most title-holders had received loans
by 1999, which they usually used to purchase cows
and form pasture that require large swaths of land,
thus decreasing the number of patches and increasing
CTGN (more aggregation).Finca access to electricity
increased from 21 to 73% from 1990 to 1999, result-
ing in a significant effect of electricity on CTGN in
1999, but no effect in 1990. It is likely thatfincas with
electricity were more developed (more types of land
uses) than those without due to the ability to increase
work output on the farm, increased knowledge of farm-
ing techniques from radio or television informational
broadcasts, and/or improved regional connection with
neighboring farms and communities.

Geographic/spatial variables have two significant
effects—Euclidean distance to the nearest primary ref-
erence community and distance to water, both derived
from GIS coverage data and relatively static over time.
The positive effect of a greater Euclidean distance in
1990 is plausible, because isolation of farms is indica-
tive of less development or clearing. The change in
sign in 1999 may be indicative of the improved road
network and the expansion of agricultural production
in general. One would expect better water access to
be associated with more interspersed and dispersed
patches since access to water can limit the ability to ex-
tensify a plot. In 1999, distance to water significantly
increased CTGN, but was not significant in 1990. This
is reasonable given that most plots in 1990 were in the
initial stages of development and clearing, therefore
water access was not a major factor.
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3.2.2. Landscape shape index
The results inTable 6generally indicate that total

edge has increased from 1990 to 1999, but the set of
independent variables only slightly influence LSI, and
not consistently for the two time periods. This is likely
due to the fact that total edge (and thus LSI) on afinca
does not change as quickly over time as CTGN or PD.
The value of rho shows this slow change—a slight
reduction from 0.5 to 0.3, indicating a decrease in the
proportion of sector variation from 1990 to 1999, but
remaining relatively high.

High median slope (steeper terrain) was signifi-
cantly related to smaller LSI in 1999, but not in 1990,
which is reasonable given that median slope is a mea-
sure for the entire landscape (and not just cleared land).
Therefore, since 1990 land use was primarily initial
land clearing close to the road or on an easily cleared
parcel of land (flat terrain is easier to clear), clear-
ing was less dependent upon overall slope of thefinca
and less edge was created. In contrast, land use in
1999 expanded clearing to other parts of thefinca that
were more affected by higher median slopes. In other
words, 1990 forest clearance occurred mostly on flat
land along the road, while 1999 likely involved fur-
ther clearing, both on flat land for crops and steeper
land previously in forest. In a similar vein, total plot
size significantly increased LSI in 1990, but had no
effect in 1999. This discrepancy was likely caused by
the spatial and household data merge—when pattern
metrics are computed, they are done so for a defined
polygon in 1999, not 1990. Therefore, the plot in 1990
with computed LSI does not necessarily correspond
to thewhole plot on which the household was located
in 1990—in other words, metrics computed in 1990
correspond only to thefinca (polygon) in 1999.

As with CTGN, age of the household head results
in higher landscape complexity (more edge/patches).
More adult females significantly reduced LSI in 1990,
but did not have effects in 1999. Females are typically
associated with less pasture and more coffee or annual
crops, therefore, since more people lived on thefincas
in 1999 than 1990, the addition of a female in 1990
had a stronger impact on land use than in 1999 when
perhaps the law of diminishing returns applied.

Labor supply variables are again significant for
1990 but not 1999. More land subdivisions positively
influence LSI, indicating both the increasing complex-
ity due to more farm managers as well as the increased

pressure on the land from a higherfinca population.
However, person-months of hired labor, which was
used primarily to convert forests, coffee plots, and
annual crop areas to pasture in 1990, reduces LSI,
resulting in lower landscape complexity in 1999.
This is probably due to labor being so widespread
in 1999 that variations in the supply no longer are
important.

Title holding and electricity both significantly af-
fected LSI—positively in 1990 for title and positively
in 1999 for electricity. Holding a full title to the land
reflects the ability (economically) to change the land-
scape, probably due to the greater availability of credit
to those with a title. Similarly in 1999, electricity
serves both as a proxy for regional infrastructure ex-
pansion as well as the household’s ability to develop
their farm. Thus, greater access to credit and electric-
ity facilitates more human footprints on the landscape.

The effect of Euclidean distance changes sign from
1990 to 1999, but the effects in 1999 are not signifi-
cant. The expected negative sign in 1990 supports the
idea that the region in 1990 was relatively undevel-
oped, therefore isolated farms had few opportunities
to engage in the local market. This changed in 1999,
when few farms were isolated due to general improve-
ments in the road network.

3.2.3. Patch density
Results of the PD model show an increase in patch-

iness of the landscape from 1990 to 1999, thus an
increase in complexity as plots have become more
fragmented by population growth and subdivision.
Rho is substantially lower in 1999 (0.08) than in
1990 (0.58), indicating that sectors are not explaining
a large proportion of variance in 1999, but did so
in 1990. This is consistent with results reported for
CTGN and LSI—all indicators of increasing sector
homogeneity from 1990 to 1999, ironically as the
landscape became more fragmented, but likely be-
cause the fragments are of similar types of land use.

Older household heads and older plots are linked
significantly to more PD in 1990, reflecting the effect
of duration of residence on patch creation. However,
by 1999 these variables are no longer significant, per-
haps due either to a leveling off in the creation of
new patches or an increase in patch size to subsume
smaller patches of the same type (i.e., multiple cof-
fee or crop patches expanding to form one patch). In
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1999, the number of children has a strong association
with PD while population density has a negative link-
age. A plausible explanation is that more children on
thefinca may indicate the need for a wider variety of
crop types—particularly in 1999 when plots have al-
ready been initially cleared and are at the cash-crop or
pasture creation stage of land development. Therefore,
if households have more children, they likely require
more patches of subsistence crops for their families.
For population density, the same argument applies as
for CTGN—that some kind of threshold is reached
whereby more population density initially increases
the need for a larger variety of patches, but eventu-
ally leads to combining patches on afinca, which then
reduces the number of patches.

Since subdivision was rare in 1990, their presence
strongly influenced PD, as seen from the significantly
positive effect. As more subdivisions are formed on a
plot, it is reasonable to presume that land uses become
more mixed (i.e., adjacent neighbors within afinca
share a large patch of pasture or coffee)—particularly
on fincas subdivided among families. Therefore,
the non-significant result in 1999 is reasonable.
OFE reduces the available labor on afinca to clear
land—likely the cause of the significantly negative
effect of OFE on PD.

The geographic-spatial variables have mixed and
contradictory effects. First, the strong negative effect
of finca road access and positive effect of road dis-
tance to the nearest community on PD are contrary
to expectations. Greater distance should be linked to
less patchiness of land use, if that patchiness reflects
more intensive land use. On the other hand, the even
stronger negative effects on PD of (greater) Euclidean
distance to a primary community in 1990 are consis-
tent with theory, and even exist in attenuated form in
1999 as well.

3.3. Overall results

The models that integrated these data, approaches,
and technologies proved more insightful for 1990
conditions than for 1999. There appear to be three
reasons. First, land uses became more homogenous
in 1999—as farms extensify their agriculture, they
tend to evolve similarly to their neighbors. The rho
statistic for each model indicated a decreasing pro-
portion of variance explained by differences between

sectors, which implies that bothfincas and sectors in
the study region became more alike (i.e., more spa-
tially autocorrelated). A better model in 1999 would
be a GLMM that estimates or controls for the spatial
covariance structure. Second, the selection of inde-
pendent variables, the manner of their measurement
and/or collection, and the hypothesized effects that
they represented may have been too simply defined,
thereby lacking the landscape clarity and statistical
power of more robust measures. Third, the dependent
variables (measures of pattern metrics) were directly
associated with LULC classification; however, in an
effort to keep things simple by choosing a classifi-
cation scheme that included only forest, non-forest,
urban/barren, water, and clouds/shadows, specificity
was reduced by generalizing the LULC types. While
such a classification scheme worked well in 1990, by
1999 the deforested landscape had undergone subse-
quent land conversion that involved changes in crop
types and an alteration in the spatial organization of
non-forest classes. For instance, land plots devoted
to subsistence crops were transformed to commercial
crops, crop land to pasture, and forest cleared for
mixtures of uses. Because our classification scheme
thematically aggregated all non-forest categories into
a single class, we smoothed the landscape and re-
duced landscape complexity. This had more of an
impact in the 1999 models, where landscape change
was occurring on lands deforested years before.

Finally, modeling two independent cross-sectional
analyses is obviously not the best choice to gain in-
ference on changes occurring over time. The difficulty
of combining spatial and survey data into one model
proved to be a challenging undertaking, however, as
pointed out by our reviewers, in order to gain more
meaningful inference on specific factors influencing
land use, a better model would implement a panel
analysis. However, since the type of data integration
and model application demonstrated in this research
has not been utilized, it is a logical first step and lays
the foundation to develop a longitudinal approach.

4. Conclusions

In this research, variables were integrated that
represent socio-economic/demographic, biophysical,
and geographical variables collected and analyzed
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through: (1) a longitudinal household survey, con-
ducted in 1990 and 1999; (2) GPS measures of survey
respondent locations (dwelling units) and farm plot
layouts; (3) satellite images processed for mapping
LULC types for multiple time periods; (4) a GIS for
representing thematic coverages within a spatially ex-
plicit database and deriving measures of geographic
accessibility and resource endowments; (5) the com-
putation of pattern metric measures to characterize
the composition and spatial organization of LULC
types at the farm-level mapped through remote sens-
ing techniques; and (6) the estimation of the deter-
minants of LULC through statistical models. While
these approaches and technologies have been used
elsewhere to consider population–environment inter-
actions, using ecological pattern metrics as dependent
variables in generalized linear mixed models is new
and exciting.

The basic intent was to examine the nature of
landscape structure, using principles of landscape
ecology, and to associate landscape form to land-
scape function in a frontier environment. In so doing,
we sought to make a contribution to the GIScience
and population–environment communities as a con-
sequence of how the dependent and independent
variables and the nature of the models and their in-
terpretations were derived. The research affirmed the
power of longitudinal surveys, the efficacy of a satel-
lite time-series and GIS tools, the relevance of pattern
metric measures, and the value of fixed and random
effects models for relating multi-thematic and spa-
tially explicit descriptions of people, place, and the
environment within a population–environment and
LULC context.

The analyses indicate rapid population growth
caused substantial subdivision of plots, which in turn
created a more fragmented landscape in 1999 than
in 1990. The underlying factors which seem to be
most important in predicting landscape complexity
are population size and composition, plot subdivi-
sions, expansion of the road and electricity networks,
age of plot (for 1990 only), and topography. The
inconsistencies over time among the significance lev-
els for these factors address the subsequent complex
changes in landscape form and function. The methods
and models presented in this research demonstrates
a useful exploratory tool to help begin to untangle
the population–environment threads that are inher-

ently linked within sophisticated GIS coverage data,
satellite imagery, and household surveys.
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were collected and processed with funding provided
by the US National Science Foundation, the World
Wildlife Federation, and the CPC, with logistical sup-
port received from several Ecuadorian government
agencies, including CONADE (the former National
Planning Agency), the Ministry of Agriculture, and
INIAP (National Institute for Agricultural Research,
in Francisco de Orellana or Coca).
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